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Preface 

 

The purpose of this text is to present the methods, equations, procedures, and techniques used in 

the formulation and development of the ELPLA function. It is of value to be familiar with this 

information when using the software.   

 

An understanding of these concepts will be of great benefit in applying the software, resolving 

difficulties and judging the acceptability of the results. 

 

Two familiar types of subsoil models are considered, Winkler’s model and Continuum model. In 

addition, the simple assumption model is also considered. The model assumes linear contact 

pressure on the base of the foundation. 

  

Finite elements-method is used to analyze both of the raft and grid foundations (or the ribbed 

raft). In which plate bending elements represent the raft according to the two-dimensional nature 

of foundation, while grid elements represent the grid. 

 

The development of the finite element equations for plate elements and grid elements is well 

documented in standard textbooks and consequently it is not duplicated in this User’s Guide. 
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1.1 Symbols used in chapter 1 

 

i Node number 

k Field number 

j Iteration cycle number 

Nw Band width number of the matrix 

N Sum of all vertical applied loads on the foundation [kN] 

qi Contact pressure at node i [kN/m
2
] 

xi Coordinate of node i from the centroidal axis x [m] 

yi Coordinate of node i from the centroidal axis y [m] 

Af Foundation area [m²] 

Mx Moment due to N about the x-axis [kN.m] 

My Moment due to N about the y-axis [kN.m] 

Ix Moment of inertia of the foundation about the x-axis [m
4
] 

Iy Moment of inertia of the foundation about the y-axis [m
4
] 

Ixy Product of inertia [m
4
] 

ex Eccentricity measured from the centroidal axis x [m] 

ey Eccentricity measured from the centroidal axis y [m] 

ai Side of contact area around node i parallel to x-axis [m] 

bi Side of contact area around node i parallel to y-axis [m] 

Eb Modulus of elasticity of the plate element [kN/m
2
] 

νb Poisson's ratio of the plate element [1] 

d Thickness of the plate element [m] 

D Flexural rigidity of the plate element D = Eb d
3
/(12(1- νb

2
)) 

Qi Contact force at node i [kN] 

Es
l
 Modulus of compressibility of the layer l [kN/m

2
] 

F
l
 Settlement coefficients f for the system of all layers until layer l, which have been 

 replaced by a material from layer l 

f
(l-1)

 Settlement coefficients f for the system of all layers until layer l - 1, which have been 

 replaced by a material from layer l 

Δf
l
 Difference of settlement coefficients f

l
 - f

(l-1)
 

wi Displacement at node i [m] 

si Soil settlement at node i [m] 

ksi Modulus of subgrade reaction at node i [kN/m
3
] 

ki Spring stiffness (Modification of modulus of subgrade reaction by iteration) [kN/m] 

ck,i Flexibility coefficient of point k due to a unit load at point i [m/kN] 

wo Rigid body translation of the raft wo  at the centroid [m] 

sWi Settlement of point i due to load from 0 to qv [m] 

 with modulus of compressibility Ws (part of reloading) 

sEi Settlement of point i due to load from qv to qo [m] 

 with modulus of compressibility Es (part of primary loading) 

qv Overburden pressure [kN/m
2
] 

Hmi Foundation level of raft i above the specified datum [m] 

tfi Foundation level of raft i from the ground surface [m] 

zil z-value of flexibility coefficient from the ground surface [m] 

zikl z-value of flexibility coefficient of raft (or node) i due to load from raft (or node) k [m] 

θxi Rotation of node i about the x-direction [Rad]  

θyi Rotation of node i about the y-direction [Rad] 
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ε  Tolerance of accuracy [m] 

θxo Rigid body rotation of the raf about the x-axis of geometry centroid [Rad] 

θyo Rigid body rotation of the raft about the y-axis of geometry centroid [Rad] 

{F} Vector of total external forces due to applied loads and the soil reactions 

{N} Vector of the resultant force N and moments My and Mx 

{P} Vector of applied loads 

{Q} Vector of soil reactions 

{Qw} Vector of groundwater forces 

{s} Vector of nodal settlements 

{sW} Vector of settlements due to reloading 

{sE} Vector of settlements due to primary loading 

{sT} Vector of displacement due to temperature difference 

{QE} Vector of contact pressures for loading part 

{Qv} Vector of contact pressures for reloading part 

{Qw} Vector of water pressure forces 

[c] Flexibility matrix of the soil 

[ks] Soil stiffness matrix 

[kp] Plate stiffness matrix 

[kg] Grid stiffness matrix 

[X] Vector of coordinates x and y 

[cW] Flexibility matrix which is determined by modulus Ws 

[cE] Flexibility matrix which is determined by modulus Es 

[ks.E] Soil stiffness matrix which is determined by modulus Es 

[ks.w] Soil stiffness matrix which is determined by modulus Ws 

{δ} Nodal displacements of the foundation, each nodal displacement has deflection w and 

 two rotations θx and θy about x- and y-axis, respectively 

{Δ} Vector of translation wo and rotations tan θxo and tan θyo 

 

 

1.2  Introduction 

 

This chapter describes the most common practical models used in the analysis of foundations. 

 

Foundation is the base of the structure that transmits its loads to the soil. It must include often 

considerable moments and forces. Although every structure is founded on soil, most of the 

practical analyses of the structure and its foundation do not take into account the influence of the 

subsoil behavior below or around the foundation. 

 

In times, when there no computers were available, simplified methods were used considering as 

low as possible computation effort to receive the results with acceptable accuracy. In some 

publications, such as that of Ohde (1942), extensive and refined calculation methods were 

proposed and applied only for few cases in the practice. 

 

The computers whose programming and memory possibilities are developed increasingly caused 

a revolution of the calculation practice. Now the programming and extensive computation effort 

can expand considerably to achieve the results as perfect as possible to the reality. These 

methods are considered particularly for the analysis of mostly deformation sensitive large 

structures. 
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By determination of contact pressures, internal forces and deformations of foundations, 

distinguishing between the calculation methods used in the analysis of strip foundations and 

those of rafts is important. Where by strip foundations a linear or uniform distribution of contact 

pressures in long direction may be assumed, while for rafts the contact pressures are examined in 

both directions. 

  

Strip foundations may be analyzed using classical subsoil models. Such as Winkler's model 

according to Winkler (1867), Graßhoff (1978) and Wölfer (1978) and Continuum model 

according to Ohde (1942), Graßhoff (1978) and Kany (1974). In addition, cases of small and 

irregular foundations can be analyzed by fewer extensive methods using tables and charts. 

 

For determination of internal forces and deformations of rafts, Finite differences-method or 

Finite elements-method is applied. Deninger (1964) developed a computer program to determine 

the contact pressures and deformation of rectangular rafts on elastic layer using the Finite 

differences-method. The earliest application of the Finite elements-method for the investigation 

of the soil foundation interaction was that of Cheung/ Zienkiewicz (1965). These authors 

considered the analysis of rectangular plate resting on Winkler's medium and on isotropic elastic 

half-space soil medium. 

 

The subsoil models for analysis of foundations (standard models) can be divided into three main 

groups: 

  

A Simple assumption model 

B Winkler's model 

C Continuum model 

 

Simple assumption model does not consider the interaction between the foundation and the soil. 

The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's 

model is the oldest and simplest one that considers the interaction between the foundation and 

the soil. The model represents the soil as elastic springs. Continuum model is the complicated 

one. The model considers also the interaction between the foundation and soil. It represents the 

soil as a layered continuum medium or isotropic elastic half-space soil medium.  

 

Although Continuum model provides a better physical representation of the supporting soil, it 

has remained unfamiliar, because of its mathematical difficulties where an application of this 

model requires extensive calculations. Practical application for this model is only possible if a 

computer program or appropriate tables or charts are available. For this aim Wölfer (1978), 

Graßhoff (1978), Kany (1974), Sherif/ König (1975), Hahn (1971) and El Kadi (1968) presented 

series of tables and charts that can be used for determining contact pressures, moments, shear 

forces and deflections, but using these tables and charts is limited to certain problems. 

 

For this purpose, a general computerized mathematical solution based on Finite elements-method 

was developed to represent an analysis for foundations on the real subsoil model. The solution 

can analyze foundations of any shape considering holes within the foundation and the interaction 

of external foundations. This mathematical solution is coded in the program ELPLA (2001). 

 

The developed computer program ELPLA also can analyze different types of subsoil models, 

especially the three dimensional Continuum model that considers any number of irregular layers. 
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Additionally, the program can be used to represent the effect of structural rigidity on the 

foundation-soil system and the influence of temperature change on the foundation. 

 

In this book, the three standard soil models are described through nine different numerical 

calculation methods. The methods graduate from the simplest one to more complicated one 

covering the analysis of most common foundation problems that may be found in the practice. 

 

 

1.3 Description of the numerical calculation methods 

 

According to the three standard soil models (simple assumption model - Winkler's model - 

Continuum model), nine numerical calculation methods are considered to analyze the raft as 

shown in Figure 1.1 and Table 1.1. 

 

Table 1.1 Numerical calculation methods  

 

Method No. 

 

Method 

 
1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

 

7 

 

 

 

8 

 

 

9 

 
Linear contact pressure 

(Simple assumption model) 

 

Constant modulus of subgrade reaction 

(Winkler's model) 

 

Variable modulus of subgrade reaction 

(Winkler's model) 

 

Modification of modulus of subgrade reaction by iteration 

(Winkler's model/ Continuum model) 

 

Modulus of compressibility method for elastic raft on half-space soil 

medium (Isotropic elastic half-space soil medium - Continuum model) 

 

Modulus of compressibility method for elastic raft on layered soil medium  

(Solving system of linear equations by iteration) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for elastic raft on layered soil medium  

(Solving system of linear equations by elimination) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for rigid raft on layered soil medium  

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for flexible foundation on layered soil 

medium 

(Layered soil medium - Continuum model) 



 

 1 - 6 
Figure 1.1 Numerical calculation methods of rafts (methods 1 - 9) 
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Today, The Finite elements-method is the most powerful procedure available in many complex 

problems. It can be applied to nearly all engineering problems, especially in structure analysis 

problems. In this book, the Finite elements-method is used to analyze the raft for all numerical 

calculation methods except Modulus of compressibility method for rigid raft on layered soil 

medium (method 8), which does not obey the elasticity rules. In the Finite elements-analysis, the 

raft is represented by rectangular plate bending elements according to the two dimensional nature 

of foundation. Grid elements are selected to represent the presence of ribs in the ribbed raft or 

grid foundations. Each node of plate or grid elements has three degrees of freedom, vertical 

displacement w and two rotations θx and θy about x- and y-axis, respectively. The development of 

the finite element equations is well documented in standard textbooks. Consequently, it is not 

duplicated in this book. The reader can see as an example that of Zienkiewicz/ Cheung (1970) or 

Schwarz (1984) for further information on the development of finite element equations. 

 

To formulate the equations of the numerical calculation methods both the raft and the contact 

area of the supporting medium are divided into rectangular elements as shown in Figure 1.2. 

Compatibility between the raft and the soil medium in vertical direction is considered for all 

methods except Linear contact pressure method (method 1). 

 

The fundamental formulation of equilibrium equation for the raft can be described in general 

form through the following Equation 1.1 

 

(1.1)          Fkp δ 

 

where the vector of forces {F} contains the action and reaction forces acting on the raft. In 

principle for all calculation methods, the action forces are known and equal to the applied forces 

on the raft while the reaction forces (contact forces) are required to be found according to each 

soil model. 

 

It is assumed that the contact pressure qi can be replaced by equivalent force Qi at the various 

nodal points. The contact pressure around the node i is given by qi = Qi/ (ai × bi) over an 

appropriate area ai × bi corresponding to the nodal contact i. It should be noticed that the contact 

area contributing to the nodal reactive force is variable from a node to another according to its 

location. Figure 1.2 shows some examples for the different nodal areas (nodes 34, 36, 38, 39 and 

61). 

 

According to subsoil models (Simple assumption model - Winkler's model - Continuum model), 

eight numerical calculation methods are considered to find the contact pressures qi, and hence to 

analyze the raft. The next pages describe the interaction between the raft and subsoil medium in 

these methods. 
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Figure 1.2 Nodal action between raft and soil 

  a) Raft foundation 

  b) Nodal action on soil 

 

 

1.3.1 Linear contact pressure (method 1 - Simple assumption model) 

 

This method is the simplest one for determination of the contact pressure distribution under 

foundations. The assumption of this method is that there is no compatibility between the 

foundation deflection and the soil settlement. In the method, it is assumed that the contact 

pressures are distributed linearly on the bottom of the foundations (statically determined) as 

shown in Figure 1.3, in which the resultant of soil reactions coincides with the resultant of 

applied loads. 

 

Plate element 

Raft 

Supporting soil medium 

a) 

b) 

Soil element 

x  

y  

i 

Qi 

Pi 

36 
38 

61 

39 
34 

Qi 

a11 a10 a9 a8 a7 a6  a5 a4 a3 

 
a2 a1 

b1 

b10 

b9 
b8 

b7 

b6 

b5 

b4 

b3 
b2 



Theory for the calculation of shallow foundations 

Chapter 1         Mathematical Models 

 

 1 - 9 

 
 

 

Figure 1.3 Contact pressure distribution for Simple assumption model 

  a) Section parallel to x-direction 

  b) Section parallel to y-direction 

  c) Foundation plan 

 

 

In the general case of a foundation with an arbitrary unsymmetrical shape and loading, based on 

Navier’s solution the contact pressure qi at any point (xi, yi) from the geometry centroid on the 

bottom of the foundation is given by 

 

(1.2) [kN/m
2
] i

xyyx

xyyyx

i

xyyx

xyxxy

f

i y
III

IMIM
x

III

IMIM

A

N
q  

 

  
 

 

  
22









 

 

For a foundation of rectangular shape, there are two axes of symmetry and Ixy = 0. Therefore, the 

contact pressure qi of Equation 1.2 reduces to 

 

(1.3)     i

x

x
i

y

y

f

i y
I

M
x

I

M

A

N
q    

 

while for a foundation without moments or without eccentricity about both axes the contact 

pressure qi will be uniform under the foundation and is given by 

 

(1.4)

      
f

i
A

N
q  

 

 

c) 
ey 

x 

y 

N 

ex 

qi 

N N 

b) a)  
qi qi 

Linear contact pressure 

bi 

ai 
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System of equations of Linear contact pressure method 

  

The foundation can be analyzed by working out the soil reactions at the different nodal points of 

the Finite elements-mesh. This is done by obtaining the contact pressure qi from Equation 1.2. 

Then, the contact force Qi at node i is given by 

 

(1.5)      iiii baqQ    

 

Considering the entire foundation, the foundation will deflect under the action of the total 

external forces {F} due to known applied loads {P} and the known soil reactions {Q}, where 

 

(1.6)           QPF  

 

The equilibrium of the system is expressed by the following matrix equation 

 

(1.7)             QPkp δ 

 

 

Equation solver of Linear contact pressure method 

  

As the plate stiffness matrix [kp] in Equation 1.7 is a diagonal matrix, the system of linear 

equations 1.7 is solved by Banded coefficients-technique. The unknown variables are the nodal 

displacements wi and the nodal rotations θxi and θyi about the x- and y-directions. 

 

 

1.3.2 Modulus of subgrade reaction (methods 2 and 3 - Winkler's model) 

 

The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade 

reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil 

model is represented by elastic springs as shown in Figure 1.4. The settlement si of the soil 

medium at any point i on the surface is directly proportional to the contact pressure qi at that 

point and is mathematically expressed as 

 

(1.8)      isii skq   

 

The ratio between the contact pressure qi [kN/m
2
] and the corresponding settlement si [m] is 

termed the modulus of subgrade reaction ksi [kN/m
3
]. 
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Figure 1.4 Winkler’s model 

 

 

System of equations of Modulus of subgrade reaction 

 

For a node i on the Finite elements-mesh, the contact force Qi is given by 

 

(1.9)      
iisiiii skbaQ     

 

It should be noticed that ksi is the modulus of subgrade reaction at node i. It may be constant for 

the entire foundation (Constant modulus of subgrade reaction - method 1) or variable from a 

node to another (Variable modulus of subgrade reaction - method 2). 

 

Considering the entire foundation, Equation 1.9 can be rewritten in matrix form as 

 

(1.10)         skQ s   

 

 

 

ai 

qi bi 

Settlement 

Foundation on 
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qi 

P2   P1   

Si 

P2 

P1 



Theory for the calculation of shallow foundations 

Chapter 1         Mathematical Models 

 

 1 - 12 

Complete stiffness formulation of Modulus of subgrade reaction 

 

The foundation will deflect under the action of the total external forces {F} due to known 

applied loads {P} and the unknown soil reactions {Q}, where 

 

(1.11)          QPF  

 

The equilibrium of the raft-soil system is expressed by the following matrix equation 

 

(1.12)            QPkp δ

 

 

 

Considering the compatibility of deformation between the plate and the soil medium, where the 

soil settlement si equal to the plate deflection wi, Equation 1.10 for Winkler’s model can be 

substituted into Equation 1.12 as 

(1.13)             Pkk sp  δ   

 

Equation 1.13 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate 

and the soil stiffness matrices, [kp] + [ks]. 

 

 

Equation solver of Modulus of subgrade reaction 

 

It should be noticed that the soil stiffness matrix [ks] is a purely diagonal matrix for Winkler’s 

model (methods 2 and 3). Therefore, the total stiffness matrix for the plate and the soil is a 

banded matrix. Then, the system of linear Equations 1.13 is solved by Banded coefficients-

technique. Since the total stiffness matrix is a banded matrix, the Equation solver 1.12 takes 

short computation time by applying these methods 2 and 3. 

 

The unknown variables in Equation 1.13 are the nodal displacements wi (wi = si) and the nodal 

rotations θxi and θyi about x- and y-directions. After solving the system of linear equation 1.13, 

substituting the obtained settlements si in Equation 1.10, gives the unknown contact forces Qi. 

 

 

1.3.3 Modification of modulus of subgrade reaction by iteration 

(method 4 - Winkler’s model/ Continuum model) 

 

This method was proposed by Ahrens/ Winselmann (1984), which based on the soil, is 

represented by variable moduli of subgrade reactions similar to the Continuum model. In the 

method the raft and soil medium are treated separately, the results of one analysis forming the 

boundary conditions for the subsequent analysis as part of an iterative process. By modifying the 

variable moduli through the iterative process, the compatibility between the soil and raft 

interface is reached. The obtained results here are similar to those by Continuum model. The 

method is not only used for analysis of the foundations by Continuum model but also by 

modulus of subgrade reaction with variable moduli. The first iterative cycle gives an analysis for 

modulus of subgrade reaction with variable moduli. The results at any intermediate iteration 

cycle may be considered as acceptable results, which in fact lie between Winkler’s model with 

variable moduli and Continuum model. 
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The iteration process of this method can be described as follows: 

 

i) First, uniform distribution of contact pressure q
(o)

 on the bottom of the foundation is 

assumed as 

(1.14)      

f

o

A

N
q )(

 

 

ii) For a set of grid points of Finite elements-mesh, the soil settlement si at point i due to 

contact forces in manner described later for Continuum model is obtained from 

 

(1.15)      



n

i

kki

j

i Qcs
1

 ,

)(
  

 

iii) The spring stiffness ki from the soil settlement si and contact force Qi is computed from 

 

(1.16)      
)(

)(
)(

j

i

j

ij

i
s

Q
k  

 

iv) The foundation is analyzed as plate on springs, the spring coefficients are used to 

generate the soil stiffness matrix [ks]. This matrix will be a diagonal matrix. Therefore, 

adding the soil stiffness matrix [ks] to the plate stiffness matrix [kp] is easy. Then, the 

overall matrix for raft-soil system becomes a banded matrix. The entire system equation 

is expressed as 

 

(1.17)             Pkk sp  δ   

 

v) A set of nodal displacements {δ} is obtained by solving the system equation 1.17 using 

the Banded coefficients-technique 

 

vi) The soil settlements si are compared with the corresponding plate deflections wi, which 

were computed from the system equation 1.17 

 

(1.18)      ii ws ε 

 

vii) If the accuracy does not reach to a specified tolerance ε a new set of contact forces are 

obtained using 

 

(1.19)      
)()()1(

 
j

i

j

i

j

i wkQ 


      

 

 

The steps ii to vii are repeated until the accuracy reaches to a specified tolerance ε, which means 

that sufficient compatibility between the plate deflections wi and the soil settlements si is reached 

in the plate-soil interface. Figure 1.5 shows the iteration cycle of the iteration process. 
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A good advantage of this method is, that it can easily eliminate the contact pressure if negative 

pressure appeared or consider nonlinear soil response. By analysis both the raft and subsoil 

separately, some former restrictions on maximum problem size can be avoided. Particularly, the 

soil flexibility matrix no longer needs to be inverted as followed by classical analysis of 

Continuum model. Generally, computing and storing the soil flexibility matrix is necessary only 

once, at the beginning of the analysis. During the second and subsequent iteration cycles, soil 

settlements can be determined by multiplying the flexibility matrix by the vector of modified 

contact forces. Consequently, the maximum permissible number of nodes is greatly increased. It 

needs also less computation time than that of the elimination method used in the analysis of 

Continuum model. 

 
 

Figure 1.5 Iteration cycle of the iteration process 
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1.3.4 Modulus of compressibility method for elastic raft on half-space soil medium 

(method 5 - Isotropic elastic half-space soil medium - Continuum model) 

 

Continuum model was first proposed by Ohde (1942), which based on the settlement will occur 

not only under the loaded area but also outside (Figure 1.6). Otherwise, the settlement at any 

nodal point is affected by the forces at all the other nodal points. 

 

 
 

Figure 1.6 Continuum model 

 

 

Continuum model assumes continuum behavior of the soil, where the soil is represented as 

isotropic elastic half-space medium or layered medium. Consequently, this model overcomes the 

assumption of Winkler’s model, which does not take into account the interaction between the 

different points of the soil medium. Representation of soil as a continuum medium is more 

accurate as it realizes the interaction among the different points of the continuum medium. 

However, it needs mathematical analysis that is more complex. The earliest application for rafts 

on continuum medium using Finite elements-method related to Cheung/ Zienkiewicz (1965). 

These authors considered the soil as isotropic elastic half-space medium. 

  

The isotropic elastic half-space soil medium bases on Boussinesq's solution (1885). The medium 

in this solution is semi-infinite homogeneous isotropic linear elastic solid subjected to a 

concentrated force. The force acts normal to the plane boundary at the surface. This basic 

solution can be used to obtain the surface settlement of isotropic elastic half-space soil medium 

subjected to a concentrated load acting on the ground surface. 

  

Modulus of compressibility method for elastic raft on half-space soil medium (method 5), which 

is described here, considers the interaction between the raft and soil. It represents the soil as 

isotropic elastic half-space medium (Figure 1.7). 

Si, i 
i 

qi 

Sk, i 

k 

Influence line of elastic displacement 
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Figure 1.7 Contact pressure distribution and soil settlement 

under elastic raft on Continuum medium 

a) Section parallel to x-direction 

b) Section parallel to y-direction 

c) Foundation plan 

 

 

Settlement at a depth z due to a concentrated load 

 

Figure 1.8 shows a concentrated load Q acting on the surface of isotropic elastic half-space 

medium. The settlement s(z) at a depth z due to this load can be expressed as 

 

(1.20)    

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
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Figure 1.8 Settlement s(z) due to a concentrated load on elastic half-space medium 

 

 

Settlement at the surface due to a concentrated load 

 

The settlement s(0) at the surface outside the point of application of the concentrated load is 

obtained by putting z = 0 in Equation 1.20 

 

(1.21)      
rE

Q
s

s

s

  π

)ν1( 
)0( 

2


 

 

Settlement at the surface under the concentrated load 

 

Equation 1.21 cannot be directly applied to determine the settlement under the concentrated load. 

Therefore, the concentrated load is converted to an equivalent uniform load over a rectangular 

area a × b. Then, the settlement s(0) at the center of the uniformly loaded rectangular area a × b 

can be obtained by integrating Equation 1.21 over that area as shown in Figure 1.9 and Equation 

1.22 

 

(1.22)    
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Equation 1.22 after integration becomes 

 

(1.23)   
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Figure 1.9 Settlement due to loaded area a × b on elastic half-space medium 

 

 

Formulation of flexibility matrix of soil as elastic half-space soil medium 

 

Determination of the settlement si,i 

 

The settlement si,i of node i, due to contact force Qi on that node for isotropic elastic half-space 

soil medium can be expressed by 

 

(1.24)   
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Equation 1.24 is simplified to 

 

(1.25)      iiiii Qcs   , ,  

 

The ratio between the settlement si,i of point i and the contact force Qi at that point is termed the 

flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a unit 

load at that point. 

 

Determination of the settlement si,k 

 

The settlement si,k of node i, due to contact force Qk on node k for isotropic elastic half-space soil 

medium, Figure 1.10, can be expressed by 

 

(1.26)     kki
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The ratio between the settlement si,k of point i and the contact force Qk at a point k is termed the 

flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a unit 

load at a point k. 

 

 
 

 

Figure 1.10 Settlement si,k of node i due to contact force Qk at node k 

 

 

Assembling of the flexibility matrix for isotropic elastic half-space soil medium 

 

To find the settlement si at node i, Equation 1.25 is applied for that node i, while Equation 1.26 

is applied for the other remaining nodes considering contact forces over nodes. For a set of grid 

points of Finite elements-mesh, the settlement at point i is obtained from 

 

(1.27)    
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Equation 1.27 in series form is 

 

(1.28)      
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Equation 1.28 for the entire foundation in matrix form is 
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Equation 1.29 is simplified to 

 

(1.30)         Qcs   

 

To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and 

the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting 

the flexibility matrix [c], gives the [n × n] stiffness matrix of the soil [ks] corresponding to the 

contact forces at the n nodal points such that 

 

(1.31)         skQ s   

 

Complete stiffness formulation for isotropic elastic half-space soil medium 

 

The foundation will deflect under the action of the total external forces {F} due to known 

applied loads {P} and the unknown soil reactions {Q}, where 

 

(1.32)          QPF  

 

The equilibrium of the raft-soil system is expressed by the following matrix equation 

 

(1.33)            QPk p δ

 

 

 

Considering the compatibility of deformation between the plate and the soil medium, where the 

soil settlement si is equal to the platIe deflection wi, Equation 1.30 for Continuum model can be 

substituted into Equation 1.32 as 

 

(1.34)             Pkk sp  δ  

 

 

 

Equation 1.34 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate 

and the soil stiffness matrices, [kp] + [ks].  

 

It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the 

degrees of freedom in Equation 1.31 differ from that in Equation 1.33. To overcome this 

problem, Equation 1.31 can be treated by extending the row and column of matrix [ks] in the 

same manner as the matrix [kp]. Consequently, the operation of matrix equations can then be 

accepted. 
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Equation solver for isotropic elastic half-space soil medium 

 

It should be noticed that the matrix [ks] is full symmetrical matrix for isotropic elastic half-space 

soil medium. Therefore, the total stiffness matrix for the raft and the soil is also full symmetrical 

matrix. 

  

The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness 

matrix is a full matrix, the equation solver 1.34 takes long computation time by applying this 

method. The unknown variables in Equation 1.34 are the nodal displacements wi (wi = si) and the 

nodal rotations θxi and θyi about the x- and y-directions. After solving the system of linear 

Equation 1.34, substituting the obtained settlements si in Equation 1.31, gives the unknown 

contact forces Qi. 

 

 

1.3.5 Modulus of compressibility method for elastic raft on layered soil medium 

(method 6 - Solving system of linear equations by iteration -  

Layered soil medium - Continuum model) 

 

Introduction 

 

Available solutions for the analysis of foundations using Continuum model either representing 

the soil as isotropic elastic half-space soil medium or Layered soil medium were presented by 

many authors. But the major difficulty for practical problems to apply this model lies in solving 

large set of equations, which requires large computer storage and long computation time. 

 

Numbers of attempts have been made to overcome this problem, among these are: 

 

Haung (1974) proposed a method for analyzing a symmetrically loaded foundation by taking into 

account the condition of symmetry. Consequently, the simultaneous equations can be reduced by 

considering only a part of the foundation rather than the whole foundation. The analysis is 

carried out for a quarter of the foundation if the raft and soil are symmetrical about both x- and y- 

axes, or for half of the foundation if the raft and soil are symmetrical about x- or y-axis. 

Nevertheless, most of the foundations in practice are not symmetrically loaded. 

 

Haung (1974) proposed an iterative scheme to convert the overall stiffness matrix into a half 

band matrix by adding a part of the soil stiffness matrix to the plate stiffness matrix. Then, 

simultaneous equations can be solved by iteration method. Nevertheless, it was found that when 

the number of equations is large while the bandwidth is small, the displacements may not 

converge, and large bandwidth should be used. 

 

Cheung (1978) proposed a method to modify the overall stiffness matrix into a banded diagonal 

matrix which can be solved by using Banded coefficients-technique. Modification of this matrix 

bases on the assumption that the deflection at a point is affected only by forces acting on 

surrounding points. Nevertheless, it is found that this foundation model is less accurate. 
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Ahrens/ Winselmann (1984) and Stark/ Majer (1988) proposed an iteration method for the 

Continuum model using variable moduli of subgrade reactions. The iteration process is repeated 

until compatibility between the plate deformations due to the moduli of subgrade reactions and 

the soil settlements due to the corresponding contact pressures is reached. El Gendy (1994) 

showed that the number of iterative cycles required for this method increase with increasing the 

number of elements and the iteration may not converge for grate number of elements. 

 

Lopes/ Gusmão (1991) suggested that in many cases the foundation subjects to symmetrical 

vertical loading. Therefore, the effects of some of the load components, such as moments, may 

be ignored and only the vertical reactions may be considered. In such cases, the size of vectors 

and matrices are considerably reduced. 

 

 El Gendy (1994) proposed an iterative scheme to convert the overall stiffness matrix into a 

banded matrix by converting the soil stiffness matrix to a diagonal matrix. Then, the 

simultaneous equations can be solved by Banded coefficients-technique. El Gendy (1998) 

modified the same iteration scheme by converting the soil stiffness matrix into equivalent 

symmetrical banded matrix. A comparison of this method with other available iteration methods 

shows that it converges more rapidly. The iteration method of El Gendy (1998) is considered in 

the program ELPLA up Version 7.0, which is described in the next pages. 

 

Description of method 

 

To describe the proposed iteration method, consider a raft resting on a layered soil medium or 

isotropic elastic half-space soil medium. The contact pressure qi at node i under the raft is 

replaced by equivalent contact force Qi. 

 

For a set of grid points of Finite elements-mesh, the soil settlement si at point i due to contact 

forces in manner described earlier for Continuum model is obtained from 

 

(1.35)     



n

k

kkii Qcs
1

 ,   

 

Considering the entire foundation, Equation 1.34 can be rewritten in matrix form as 

 

(1.36)         Qcs   

 

Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the 

contact forces at the n nodal points such that 

 

(1.37)         skQ s   

 

Complete stiffness formulation 

 

The foundation will deflect under the action of the total external forces {F} due to known 

applied loads {P} and the unknown soil reactions {Q}, where 

 

(1.38)          QPF  
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The equilibrium of the raft-soil system is expressed by the following matrix equation 

 

(1.39)            QPk p δ 

 

Considering the compatibility of deformation between the plate and the soil medium, where the 

soil settlement si is equal to the plate deflection wi, Equation 1.37 for Continuum model can be 

substituted into Equation 1.39 as 

 

(1.40)             Pkk sp  δ  

 

 

 

It should be noticed that the plate stiffness matrix [kp] is a banded matrix and the soil stiffness 

matrix [ks] is a full unsymmetrical matrix for layered soil medium and a full symmetrical matrix 

for isotropic elastic half-space soil medium. The major difficulty for practical problems lies in 

solving large set of equations, which requires large computer storage and long computation time. 

In order to overcome this problem, it is possible to convert the soil stiffness matrix [ks] to a 

symmetrical banded matrix [k´] of half bandwidth equal to that of the plate stiffness matrix [kp]. 

Then, it can be easily added the matrix [k´] to the matrix [kp]. The resultant matrix will be also a 

banded matrix. Consequently, Equation 1.40 can be solved by using the Banded coefficients-

technique. 

 

Banded matrix formulation 

 

To illustrate how to convert the soil stiffness matrix [ks] to a symmetrical banded matrix, 

consider the simple example of the foundation shown in Figure 1.11. The foundation has 9 

nodes, each node has three unknown deformations w, θx and θy. There are 27 simultaneous 

equations. The foundation of 9 nodes yields to a plate stiffness matrix [kp] with a half bandwidth 

Nw = 15. 

 

 
 

Figure 1.11  Foundation of 9 nodes 

 

 

The matrix [ks] can be divided into two matrices [k1] and [k2] as follows 

 

(1.41)          21 kkks 

     

 

 

Equation 1.41 can be rewritten with matrix coefficients in details as 
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where the matrix  [k1] is a symmetrical banded matrix that has the same half bandwidth of matrix 

[kp] and the second matrix [k2] can be converted to a diagonal matrix as described in the iteration 

process. 

 

Iteration process 

 

The iteration process of the method can be described as follows: 

 

i) First, uniform distribution of contact pressure q
(o)

 on the bottom of the foundation is

 assumed as 

 

(1.43)      

f

o

A

N
q )(

 

 

ii) The soil settlements si due to contact forces Qi in manner described either earlier for 

isotropic elastic half-space soil medium or later for layered soil medium are obtained 

from 

 

(1.44)          Qcs   

 

iii) A set of nodal forces {QA} are computed from the matrix [k2] and the soil settlements 

 {s} as 

 

(1.45)          skQA  2

 

 

 

iv) The matrix [k2] is converted to a equivalent diagonal matrix [k*2]. The coefficients of the

 diagonal matrix are obtained from 

(1.46)

      
i

A

ii
s

Q
k i, 

 

v) The equivalent symmetrical banded matrix [k´] for the soil stiffness matrix [ks] is 

 

(1.47)           21

 kkk 

 

vi) Now, adding the equivalent soil stiffness matrix [k´] to the plate stiffness matrix [kp] is 

easy. Then, the overall matrix becomes a banded matrix. The entire system equation is 

expressed as 

 

(1.48)              Pkk p  δ  

 

 

 

vii) A set of nodal displacements {δ} is obtained by solving the system equation 1.48 using

 the Banded coefficients-technique 
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viii) The soil settlements si are compared with the corresponding plate deflections wi, which 

were computed from the system equation 1.48 

 

(1.49)      ii ws ε 

 

ix) If the accuracy does not reach to a specified tolerance ε a new set of contact forces are 

obtained using 

 

(1.50)                 skQA  2

    

 

 

The steps ii to viii are repeated until the accuracy reaches to a specified tolerance ε, which means 

that sufficient compatibility between the plate deflections wi and the soil settlements si is reached 

in the plate-soil interface. Figure 1.12 shows the flow chart of the iteration process. 

 

A good advantage of this iteration method is that it requires much less computer memory than 

the elimination method. It needs also less computation time than that of the elimination method 

used in the analysis of Continuum model. Much fewer cycles are needed to obtain a satisfactory 

accuracy, nearly two or three cycles. Consequently, the maximum permissible number of nodes 

is greatly increased. It can easily eliminate the contact pressure if negative pressure appeared or 

consider nonlinear soil response. By analysis of both the raft and subsoil separately, some former 

restrictions on maximum problem size can be avoided. 
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Figure 1.12 Flow chart of the iteration process 
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1.3.6 Modulus of compressibility method for elastic raft on layered soil medium 

(method 7 - Solving system of linear equations by elimination - 

 Layered soil medium - Continuum model) 

 

In reality, the soil profile is usually nonhomogeneous. The most likely profile is layered. In 

addition, foundations are almost never placed at the ground surface. Therefore, an improvement 

needs to be applied to half-space soil medium concerning the assumption that the load is applied 

at the surface of homogeneous isotropic elastic half-space medium. Representing the soil as 

layered continuum medium is more complicated than that as isotropic elastic half-space soil 

medium. Kany (1954) presented an extension of Ohde’s method (1942) to strip footing resting 

on nonhomogeneous and anisotropic medium. It can be applied for rafts as described in the 

following section. 

 

Settlement at a depth z due to a loaded area 

 

The settlement at the corner of a loaded area can be determined in a manner similar to that at the 

center of a loaded area, which was described in section 1.3.4. This is done by integrating 

equation 1.20 over a loaded area. Figure 1.13 shows a loaded area q of size a × b acting on the 

surface of isotropic elastic half-space medium. 

 

 

 
 

Figure 1.13 Settlement s(z) under the corner of a loaded area on elastic half-space medium 
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According to Steinbrenner (1934), the settlement s(z) at a depth z under the corner of the loaded 

area is given by 

 

(1.51)    
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Settlement at the surface due to a loaded area 

 

The settlement s(0) of a point at the surface under the corner of a rectangular loaded area is 

obtained by putting z = 0 in Equation 1.51 
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Where in Equations 1.50 and 1.51 is 
22222    and   bamzbac   

 

Settlement of a finite layer due to a loaded area 

 

For the settlement Equations 1.51 and 1.52 presented above, it was assumed that the soil layer 

extends to an infinite depth. However, if a rigid base at a depth z = h underlies the soil layer, the 

settlement sh of the layer can be approximately calculated as (Figure 1.14) 

 

(1.53)      )()0( zsssh  

 

Subtracting Equation 1.51 from Equation 1.52 yields 
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Equation 1.54 can be simplified to 

 

(1.55)      f
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q
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Figure 1.14 a) Isotropic elastic half-space soil medium 

b) Elastic layer on rigid base 

 

 

Settlement of multi-layers due to a loaded area  

 

Obviously, it can generalize this approach to consider multi-layers of soil. Each has different 

elastic material and thickness as shown in Figure 1.15. The vertical settlement of a layer l in an n 

layered system is given by 
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The total settlement for n layered system is 
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Considering Poisson’s ratio vs for all soil layers is constant as its value for most soil types ranges 

between 0.3 and 0.5. 
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Figure 1.15 Layered system 

 

 

Settlement at an interior point of loaded area 

 

So far it has been considered the settlement beneath a corner of a loaded area. To find the 

settlement at any other point the principle of superposition can be used. The settlement at an 

interior point of the rectangular loaded area is given by the sum of the settlements at the corners 

of four sub-loaded areas. To determine the settlement coefficient f
(l)

 for a layer l at an interior 

point i of the rectangular loaded area shown in Figure 1.16, the Formula of Kany (1974) can be 

applied as 
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Where in Equation 1.58 is 
22222

   und   nnlnnn baMzbac   

 

The value zl means the level of the lower side of the layer l from the foundation level.  
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Figure 1.16   Superposition of four loaded areas to find the settlement at an interior point i 

 

 

Settlement at a point outside the loaded area 

 

Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any 

point outside the loaded area as shown in Figure 1.17. First, the settlement s1 as if the entire 

region defined by load q is determined. Then, the settlements due to the two edge loaded areas s2 

and s3 are subtracted. Finally, the settlement s4 is added since it has been subtracted twice in s2 

and s3. Using the same process, the settlement coefficient f
(l)

 for a layer l at an exterior point i of 

the rectangular loaded area shown in Figure 1.17 is given by 
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Figure 1.17   Superposition of four loaded areas to find the settlement at an exterior point i 

 

 

For any point i of coordinates (ζ, η) inside or outside the loaded area a × b (Figure 1.18) the 

settlement coefficient f
(l)

 can be obtained according to Poulos/ Davis (1974) using the principle 

of superposition by the following general Equation 1.60 
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Figure 1.18  Superposition of four loaded areas to find the settlement at any point i 
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Formulation of the flexibility matrix for layered soil medium 

Determination of the settlement si,i  

 

Because the formula of Steinbrenner (1934) is valid for surface loadings, where the plate 

element is supposed to be rigid with respect to the subsoil, compatibility between plate 

displacement and surface settlement is required. Graßhoff (1955) defined the Characteristic point 

to be that point of a surface area loaded by a uniformly distributed pressure, where the settlement 

due to that pressure is identical with the displacement of a rigid foundation of similar dimensions 

and loading. For a rectangular element a × b, the characteristic point takes the coordinates ac = 

0.87a and bc = 0.87b as shown in Figure 1.19. 

  

 
 

 

Figure 1.19 Characteristic point of the settlement 

 

 

Considering the settlement under the characteristic point for the loaded area ai * bi around a node 

i, the settlement si,i of a node i, due to contact force Qi on that node for layered soil medium can 

be expressed as 
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The ratio between the settlement si,i of a point i and the contact force Qi at that point is termed 

the flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a 

unit load at that point. 
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Determination of the settlement si,k 

 

For a loaded area ak × bk around node k, Figure 1.20, the settlement si,k of a node i, due to contact 

force Qk on node k for layered soil medium can be expressed as 
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The ratio between the settlement si,k of a point i and the contact force Qk at a point k is termed the 

flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a unit 

load at a point k. 

 

 
 

Figure 1.20 Settlement si,k of a node i due to contact force Qk = qk ak bk at node k 

 

 

It can be noticed that the flexibility coefficients for isotropic elastic half-space medium may be 

obtained by applying the layered soil medium. In this case, the soil layer must extend to a depth 

that can be considered as an infinite depth (for example z ≈ 10
10

 [m]). In the program ELPLA, 

layered soil medium is available in methods 4, 6, 7, 8 and 9 while isotropic elastic half-space 

medium is available only in method 5. 

 

Assembling of the flexibility matrix for layered soil medium 

 

To find the settlement si at a node i, Equation 1.61 is applied for that node i, while Equation 1.62 

is applied for the other remaining nodes considering contact forces over nodes. For a set of grid 

points of Finite elements-mesh, the settlement at a point i is obtained from 
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Equation 1.63 in series form is 

(1.64)      
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
n

k

kkii Qcs
1

 ,   

 

Equation 1.64 for the entire foundation in matrix form is 
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Equation 1.65 is simplified to 

 

(1.66)         Qcs   

 

To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and 

the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting 

the flexibility matrix [c], gives the [n × n] stiffness matrix of the soil [ks] corresponding to the 

contact forces at the n nodal points such that 

 

(1.67)         skQ s   

 

Complete stiffness formulation for layered soil medium 

 

The foundation will deflect under the action of the total external forces {F} due to known 

applied loads {P} and the unknown soil reactions {Q}, where 

 

(1.68)          QPF  

 

The following matrix equation expresses the equilibrium of the raft-soil system 

 

(1.69)            QPk p δ

  

 

 

Considering the compatibility of deformation between the plate and the soil medium, where the 

soil settlement si is equal to the plate deflection wi, Equation 1.67 for Continuum model can be 

substituted into Equation 1.69 as 

 

(1.70)             Pkk sp  δ   

 

Equation 1.70 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate 

and the soil stiffness matrices, [kp] + [ks].  
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It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the degrees of 

freedom in Equation 1.67 differ from that in Equation 1.69. To overcome this problem, Equation 

1.67 can be treated by extending the row and column of matrix [ks] in the same manner as the matrix 

[kp]. Consequently, the operation of matrix equations can then be accepted.  

 

Equation solver for layered soil medium 

 

It should be noticed that the matrix [ks] is full unsymmetrical matrix for layered soil medium. 

Therefore, the total stiffness matrix for the raft and the soil is also full unsymmetrical matrix. 

 

The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness 

matrix is a full matrix, the equation solver 1.70 takes long computation time by applying this 

method. The unknown variables in Equation 1.70 are the nodal displacements wi (wi = si) and the 

nodal rotations θxi and θyi about the x- and y-directions. After solving the system of linear 

equation 1.70, substituting the obtained settlements si in Equation 1.67, gives the unknown 

contact forces Qi. 

 

 

1.3.7 Modulus of compressibility method for rigid raft on layered soil medium 

(method 8 - Layered soil medium - Continuum model) 

 

In many practice cases, treating the raft as completely rigid raft is convenient. Here, two 

conclusions can be drawn concerning raft settlement: 

 

- For a raft without moments or without eccentricity about both axes, the settlement will be

 uniform under the raft 

 

- For a raft with moments, the raft will rotate as a rigid body and there will be differential

 vertical movement between points on the raft, but all points will remain in the same

 plane 

 

Therefore, the displacements are considered linearly distributed on the bottom of the raft.  

 

The method developed here considers the interaction between the raft and soil. It represents the 

soil as layered medium or isotropic elastic half-space medium. 

 

In the general case of a foundation with an arbitrary unsymmetrical shape and loading, according 

to Kany (1972) the unknowns of the interaction problem, Figure 1.21, are: 

 

- n contact pressures qi 

- Rigid body translation of the raft wo at the centroid 

- Rigid body rotation θx of the raft about the x-axis of the geometry centroid 

- Rigid body rotation θy of the raft about the y-axis of the geometry centroid 

 

To determine these n + 3 unknowns, n compatibility equations of rigid raft displacements with 

the soil settlements at the n nodal points are considered. In addition, the three equations of 

overall equilibrium of the raft are also considered. 
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Formulation of the rigid raft on layered soil medium 

Soil settlements 

 

To describe the method, consider a general raft resting on a layered soil medium (isotropic 

elastic half-space soil medium may be also applied), Figure 1.21. The contact pressure qi at a 

node i under the raft is replaced by equivalent contact force Qi. For a set of grid points of 

elements-mesh, the settlement at a point i is obtained from 

 

(1.71)      



n

k

kkii Qcs
1

 ,   

 

Considering the entire foundation, Equation 1.71 can be rewritten in matrix form as 

 

(1.72)          Qcs   

 

Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the 

contact forces at the n nodal points such that 

 

(1.73)          skQ s   

 

 
 

Figure 1.21 Contact pressure distribution and soil settlement under a rigid raft 

a) Section parallel to x-direction 

b) Section parallel to y-direction 

c) Foundation plan 
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Rigid body translation wo and rotations θxo and θyo 

 

Due to the raft rigidity, the following linear relation (plane translation) expresses the settlement 

si at a node i that has coordinates (xi, yi) from the geometry centroid 

 

(1.74)     xiyioi yxws θtan θtan  

 

Equation 1.74 is rewritten in matrix form for the entire foundation as 

 

(1.75)     
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11
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1

 

 

Equation 1.75 is simplified to 

 

(1.76)           Δ 
T

Xs  

 

Equilibrium of the vertical forces 

 

The resultant N due to external vertical forces acting on the raft must be equal to the sum of 

contact forces 

 

(1.77)     nQQQQN  ...321 

 

Equilibrium of the moments 

 

The moment due to resultant N about the y-axis must be equal to the sum of moments due to 

contact forces about that axis 

 

(1.78)    nnx xQxQxQxQeN  ...    332211  

 

Similarly, the equilibrium equation for moments about the x-axis is 

 

(1.79)    nny yQyQyQyQeN  ...    332211  

 

Equations 1.77, 1.78 and 1.79 are rewritten for the entire foundation in matrix form as 
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(1.80)    
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Equation 1.80 is simplified to 

 

(1.81)          QXN   

 

Substituting Equation 1.73 and 1.76 in Equation 1.81 gives the following linear system of 

equations 

(1.82)            Δ   
T

s XkXN  

 

Solving this system of linear equations 1.82, gives wo, tan θx and tan θy. 

 

Substituting these values in Equation 1.76, then in Equation 1.73 gives the following matrix 

equation to find the n unknown contact forces 

 

(1.83)           Δ  
T

s XkQ  

 

Substituting also the values wo, tan θx and tan θy in Equation 1.72, gives the n settlements. 

 

Case of uniform settlement 

 

For a raft without moments or without eccentricity about both axes, the settlement will be 

uniform (si = wo) and the raft will not rotate (θxo = θyo = 0). Therefore, the unknowns of the 

problem reduce to n contact pressures qi and rigid body translation wo. 

 

Derivation of uniform settlement wo 

 

The derivation of the uniform settlement for the rigid raft can be carried out by equating the 

settlement si by uniform settlement wo for all nodes in Equation 1.73. In this case, the contact 

forces can be rewritten as a function in the terms ki, j of the soil stiffness matrix as follows 

 

(1.84)  
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Carrying out the summation of the all contact forces 

 

(1.85)     

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The rigid body translation wo, which equals to the settlement si at all nodes, is obtained from 

 

(1.86)     
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Substituting this value of wo in Equation 1.73 gives the n unknown contact forces Qi. 

 

It should be noticed that Equation 1.85 is analogous to the Equation 1.8 for Winkler’s model. 

Therefore, the summation of terms ki,j (= N/wo) may be used to determine the modulus of 

subgrade reaction ks.  

 

 

1.3.8 Modulus of compressibility method for flexible foundation on layered soil medium 

(method 9 - Layered soil medium - Continuum model) 

 

If the foundation is perfectly flexible (such as an embankment), then the contact stress will be 

equal to the gravity stress exerted by the foundation on the underlying soil.  

 

For the set of grid points of the foundation, the soil settlements are 

 

(1.87)          Qcs   

 

If the foundation carries concentrated loads, Equation 1.87 may not be able to determine the 

vertical stress at a point below the concentrated load. In this case, the system equation of the 

elastic solution can be used to simulate the flexible foundation by assuming a very small raft 

rigidity D tends to zero, Equation 1.88 

 

(1.88)      0
)ν-(1 12

 
2

3

b 
b

dE
D 

 

In Equation 1.88, the value of D is nearly equal to zero when for an example Eb = 1 × 10
-8

 

[kN/m
2
]. 

 

 

 

 

 

 

 



Theory for the calculation of shallow foundations 

Chapter 1         Mathematical Models 

 

 1 - 43 

1.4 Symmetrical system 

 

In many practical problems, both the raft and loading are symmetric. Deninger (1964) by using 

the Finite differences and Haung (1974) by using the Finite elements analyzed a symmetrically 

loaded raft by taking into account the condition of symmetry. In this case, the raft system 

equations can be solved by considering only a part of it rather than the entire raft. A quarter of 

the raft will be analyzed if the problem is symmetrical about both x- and y-axes, a half of the raft 

if the problem is symmetrical about x- or y-axis. Therefore, the computational time and computer 

storage can be considerably reduced. 

 

Derivation of flexibility coefficients for symmetrical system  

 

The nodal numbering of the set of grid nodes from 1 to n is replaced by another coordinate 

numbering from (1, 1) to (N, M) as shown in Figure 1.22. 

 

 
 

 

Figure 1.22 Numbering of nodes by symmetrical cases 

 

 

The settlement equation at a node i can be rewritten as 
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where: 

c(r, j), (l, m) Flexibility coefficient [m/kN] for a point of coordinate (r, j) due to a unit contact 

force Q(l, m) [kN] at a node of coordinate (l, m) 

l and r  Grid numbers in x-direction 

m and j  Grid numbers in y-direction 

 

Case of symmetry about the x-axis 

 

Due to symmetry about the x-axis the following conditions are drawn 

 

(1.90)   
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as 
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Equation 1.91 is simplified to 

 

(1.92)    
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In general form, the settlement equation in case of symmetry about the x-axis will be 

 

(1.93)     
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where: 

C´(r, j), (l, m) Coefficient of flexibility in case of symmetry about the x-axis 

 

The unknowns in Equation 1.93 are the contact forces Q(1, 1) to Q([N+1]/2, M), as total M×(N+1)/2 

values. 
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Case of symmetry about the y-axis 

 

Due to symmetry about the y-axis the following conditions are drawn 
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as 

 

(1.95)   
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Equation 1.95 is simplified to 
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In general form, the settlement equation in case of symmetry about the y-axis will be 
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where: 

C´(r, j), (l, m) Coefficient of flexibility in case of symmetry about the y-axis 

 

The unknowns in the Equation 1.97 are the contact forces Q(1, 1) to Q(N, [M+1]/2), as total 

N×(M+1)/2 values. 
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Case of symmetry about x-and y-axes 

 

Due to symmetry about both x- and y-axes the following conditions are drawn 
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as 
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Equation 1.99 is simplified to 
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In general form, the settlement equation in case of symmetry about both x-and y-axes will be 
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where: 

C´(r, j), (l, m) Coefficient of flexibility in case of symmetry about both x-and y-axes 

 

The unknowns in the Equation 1.101 are the contact forces Q(1, 1) to Q([N+1]/2, [M+1]/2), as total 

(N+1)×(M+1)/4 values. 

 

The settlement equations of the antimetrical cases can be derived in a similar manner to that of 

symmetrical case. 
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1.5 Antimetrical system 

 

If the raft is symmetric in shape and unsymmetric in loading, it will be possible to divide this 

general case of loading into two cases of symmetrical and antimetrical loading as shown in 

Figure 1.23. Then, the analysis can be carried out for half the raft twice. 

 

 
 

 

Figure 1.23 General case of loading by symmetrical and antimetrical loading 

 

 

It should be noticed that by using the advantage of symmetry, the original flexibility matrix [c], 

which has dimension of [N × M]
2
 will be reduced to dimension of [(N+1/2)×M]

2
, [N×(M+1)/2]

2
 

and [(N+1)/2×(M+1)/2]
2
 in the cases of symmetry about x-axis, y-axis and double symmetry 

about both x- and y-axes, respectively. 

 

 

1.6 Boundary conditions by symmetrical and antimetrical cases 

 

General boundary conditions for analysis of the raft in bending are zero deflections w and 

rotations θx and θy along the fixed edge. Zero rotations about the x-axis (θx = 0) or the y-axis (θy = 

0) along the simply supported edge whenever is applicable in direction x or y. 

 

For symmetrical and antimetrical cases of loading some corresponding appropriate boundary 

conditions must be applied to all nodes on the axis of symmetry as follows: 

 

- Symmetry about x-axis makes the rotations θx for all the nodes along the x-axis to be 

zero, Figure 1.24a 

 

- Symmetry about y-axis makes the rotations θy for all the nodes along the y-axis to be 

zero, Figure 1.24b 

 

- Antisymmetry about the x-axis makes the deflections w for all the nodes along the x-axis 

to be zero, Figure 1.24c  

 

- Antisymmetry about the y-axis makes the deflections w for all the nodes along the y-axis 

to be zero, Figure 1.24d 
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This can be easily handled by setting the element values of the corresponding column and row in 

the entire stiffness matrix zero. 

 

 
 

Figure 1.24 Boundary condition for symmetrical and antisymmetrical cases 

 

 

1.7 Bilinear soil behavior 

 

A simplified way was supposed to improve the deformation behavior of the soil by dividing the 

stress settlement curve into two regions, Figure 1.25. In the first region the ground will settle 

until reaching an overburden load qv according to the modulus of compressibility Ws. In the 

second region after reaching the load qv the ground will settle more under load q according to the 

modulus of compressibility Es until reaching the total load qo. 
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Figure 1.25 Load settlement diagram (bilinear relation) 

 

 

Therefore, the settlement si of the foundation can be derived from two variations such that 
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Equation 1.102 for the entire foundation in matrix form is 
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It can be generally said that the total contact pressure on the foundation is given by 

 

(1.104)      iEivio qqq     

 

The bilinear relation of the soil deformation may be taken into consideration as follows. 
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At first it should be carried out a primary calculation by one of the following two cases: 

 

Case 1: qvi < qo at all nodes i on the grid of the raft mesh 

 

The settlement equation will be 
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Then, the raft equation due to bilinear soil behavior in a matrix form is given by 
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Case 2: qvi > qo at all nodes i on the grid of the raft mesh 

 

The settlement equation will be 
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Then, the raft equation due to bilinear soil behavior in a matrix form is given by 

 

(1.108)             Pkk Wsp  δ   

      

 

 

If one of the above two cases is not existent, an iterative solution for the settlement equation will be 

necessary. 

 

 

1.8 Variable foundation levels 

1.8.1 Variable foundation levels by neighboring rafts 

 

Sometimes, by determination the influence of the neighboring rafts or the interaction among 

system of rafts, the foundation levels of the rafts are variable as shown in Figure 1.26. In this 

case, the foundation levels of the rafts must be related to a specified datum Hm. 

 

The z-value of flexibility coefficient for any soil layer under the raft can be expressed by 

 

(1.109)     mkmifiilikl HHtzz  )( 

 

It should be noticed that the foundation level Hm under the specified datum is negative. 
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Figure 1.26 Settlement influence of raft k on the raft i 

 

 

1.8.2 Variable foundation levels with variable raft thickness 

 

By analysis of rafts, there are three possibilities to define the raft thickness: 

 

a) The raft thickness for the entire raft is constant. 

In this case, there is only one foundation level tf (Figure 1.27a) 

 

b) Variable raft thickness with constant foundation level. 

In this case, the foundation level tf is also constant (Figure 1.27b)  

 

c) Variable raft thickness with variable foundation level. In this case, the foundation level is

 variable (Figure 1.27c). The z-value of flexibility coefficient for any soil layer under the

 raft can be expressed by 

 

(1.110)      )( fkilikl tzz  
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Figure 1.27 Three possibilities concerning raft thickness 

 

 

1.9 Effect of groundwater pressure 

 

If the water table is located above the foundation, the foundation will be exposed to an additional 

negative pressure qw due to the effect of groundwater. In this case, the system equation will be 

 

(1.111)               wWsp QPkk  δ   

      

 

 

 

1.10 Effect of temperature difference 

 

Sometimes, a temperature difference ΔT occurs between the upper and lower surface of the raft. 

An example for this case is when a fire oven is constructed directly on the raft in an industry 

structure.  

 

The deformation in the raft due to temperature difference can be evaluated as follows: 

 

The nodal displacement {δ}i at a node i of the raft must be replaced by {δ} - {Δ}, in which 

 

(1.112)     
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By assuming the warped surface as part of a sphere, it can be proven from geometry, Figure 1.28, 

that 

(1.113)     [m]       
2

 Δ α
2

d

rT
t iT
i  

 

where: 

ti Amount of curvature [m] at a node i  

αT Coefficient of thermal expansion of concrete [1/°C] 

ri Distance [m] from a node i to the center of the raft where curling is zero 

d Thickness of the raft [m] 

ΔT Temperature difference between the upper and lower surface of the raft in which 

 ΔT = To - Tu [°C] 

To  Temperature at the upper surface of the raft [°C] 

Tu Temperature at the lower surface of the raft [°C] 

 

Positive deflection when the raft warps down with a temperature at the top bigger than that at the 

bottom. Due to temperature difference, the total settlement on the foundation can be expressed as 

 

(1.114)           To sss  

 

where: 

{so} Vector of the settlement due to the loads acting on the foundation 

{sT} Vector of the additional displacement due to the temperature difference 

 

Then, the raft equation due to influence of temperature difference in matrix form is 

 

(1.115)                Tssp skPkk  δ  
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Figure 1.28 Temperature effect on the raft foundation 

 

 

1.11 Analysis of ribbed raft 

 

The traditional structural analysis of the foundation using Finite elements-method requires two 

main types of elements. The first type is grid element used to analyze strip foundations or grid 

foundations. The second type of finite elements is the plate element used to analyze footings or 

rafts. The conventional methods for analysis of foundations consider only one type of elements. 

 

The combined problems of foundations with others stiffeners were treated by many authors. 

Deninger (1964) presented a method for analysis of rectangular rafts that was stiffened through 

rigid walls by Finite differences-method. Zienkiewicz/ Cheung (1970) introduced a solution for 

floor slab with edge beams. Lee/ Brown (1972) analyzed plane frame on two dimensional 

foundations by using beam elements for the frame and plate bending elements for the foundation. 

Mikhaiel (1978) considered the effect of shear walls and floor rigidity by using a combination 

between plate bending and plain stress elements. Bazaraa/ Shaheen/ Sabry/ Krem (1991) studied 

the effect of tie beams on the behavior of the footings. The footings were represented by the plate 

bending elements, while the tie beams were represented by grid elements. Bazaraa/ Ghabrial/ 

Henedy (1997) studied the effect of boundary retaining walls on the raft behavior by using a 

mesh of plate bending-plain stress element combinations. 
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Ribbed raft may be used for many structures with heavy loads or large spans, if a flat level for 

the first floor is not required. Consequently the volume of concrete is reduced. Such structures 

are silos and elevated tanks. Although this type of foundation has many disadvantages if used in 

normal buildings, it is still used by many designers. Such disadvantages are the raft that needs 

deep foundation level under the ground surface, fill material on the foundation to make a flat 

level and an additional slab on the fill material to construct the first floor. The use of ribbed raft 

relates to the simplicity of analysis by hand calculations. 

 

ELPLA was developed to analyze ribbed raft using a combination of two finite element types. 

The raft is represented by plate bending elements according to the two-dimensional nature of 

foundation. Grid elements are considered to represent the girder action along the raft. The whole 

stiffness matrix of the raft with girders is the sum of the two stiffness matrices of the raft and 

girders.  

 

Ribbed raft can be analyzed using plate elements together with grid elements placed in the region 

close to plate element boundaries as shown in Figure 1.29. To consider the compatibility of 

deformation between the plate and grid elements, a grid element that has the same degree of 

freedom of plate element at each intersection node must be chosen. 

 

 
 

Figure 1.29  Finite elements-net of ribbed raft 

 

 

The equilibrium of the foundation for simple assumption model is expressed by 

 

(1.116)              QPkk gp  δ  

 

 

 

while for Winkler’s and Continuum models is expressed by 

 

(1.117)              Pkkk sgp  δ  
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2.1  Introduction 

 

Most of the available solutions used to determine the flexibility coefficient, or the modulus of 

subgrade reaction, assume that the subsoil consists of a homogeneous layer. In reality, the soil 

consists of different material features in vertical and horizontal directions. In practice, a number 

of vertical soil profiles define the soil under the foundation. Each one has multi-layers with 

different soil materials. Therefore, three-dimensional coefficient of flexibility, or variable 

modulus of subgrade reaction, must be taken into consideration. Kany (1972) determined the 

two-dimensional flexibility coefficient for beam foundation by determining flexibility 

coefficients for the existing boring logs first. Then, by interpolation you can obtain the other 

coefficients outside the boring logs. The following paragraph describes the methods that are 

available in program ELPLA to determine the three-dimensional coefficient of flexibility or 

variable modulus of subgrade reaction. 

 

 

2.2 Subareas method 

 

El Gendy (1994) proposed a simplified method to obtain the three-dimensional coefficient of 

flexibility or variable modulus of subgrade reaction by dividing the whole foundation area into 

subareas. Each subarea corresponds to one of the soil boring logs as shown in Figure 2.1. The 

method may be used if there is no great difference in the soil layers of the boring logs. 

  

 
 

Figure 2.1  Boring locations and subareas 

 

 

2.3 Interpolation method 

 

Kany/ El Gendy (1995) proposed an accurate method to determine the three-dimensional 

flexibility coefficient or variable modulus of subgrade reaction for irregular foundation by 

interpolation, as described below. 
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2.3.1 Determination of variable modulus of subgrade reaction ks 

 

Initially, a number of main moduli ksm equal to the number of boring logs should be determined. 

Each modulus corresponds to one of the soil boring logs and is calculated from the elastic 

material of that boring. 

 

The following steps and Figure 2.2 describe the determination of the main modulus ksm: 

 

i) First, assume average or linear distribution of contact pressure qi on the bottom of the 

foundation 

 

ii) Find the soil settlements si due to assumed contact pressures. According to Ohde (1942), 

the settlement is given by 

(2.1)      



n

j

jjii qcs
1

 ,   

 

where: 

ci, j   flexibility coefficient of a node i due to a unit load at field j 

 

iii) Find the nodal modulus ki at each node on the bottom of the foundation due to the above 

soil settlements and pressures. According to Winkler (1867), the modulus ki at node i is 

given by 

(2.2)      

i

i
i

s

q
k  

 

iv) Find the mean modulus ksm for the whole foundation area of nodes n 

 

(2.3)      



n

i

ism k
n

k
1

 
1

 

 

 

The steps ii to iv are repeated for each boring. 
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Figure 2.2 Determination of main modulus ksm 

 

 

Once the mean moduli ksm have been calculated, the variable modulus of subgrade reaction ks 

can be determined for all nodes on the bottom of the slab as follows: 

 

It is assumed that the foundation area is divided into three region types as shown in Figure 2.3. 

 

Type I 

This region is a triangular region. Three boring logs confine such a region. To determine the 

modulus ks for a node lying at a point (x, y) in a triangular region, assumes a plane function 

passed through the three boring logs to represent the modulus ks such that 

 

(2.4)      cybxaks  

 

Such a function will involve three undetermined coefficients: a, b and c. These coefficients can 

be determined using a system of three linear equations consisting of the known mean moduli ksm 

and coordinates (x, y) for the three boring logs. Figure 2.3 illustrates an example of region type I 

through the dark shaded area, which is confined by boring logs B1, B3 and B4. 

 

 

 

 

 

 

 

P1 P2 

q1 
qi qn 

s1 si 
sn 

k1 ki kn 

Linear soil pressure 

Settlement due to linear soil pressure 

Nodal modulus of subgrade reaction 



Theory for the calculation of shallow foundations 

Chapter 2          Foundations on Irregular Subsoil 

 

 2 - 5 

Type II 

One or more sides of the foundation and two boring logs confine this region. Using a linear 

interpolation between the mean moduli ksm for the two boring logs can obtain the modulus ks for 

a node lying in this region. Equation 2.5 and Figure 2.3 indicate an example for region type II 

through the area confined by boring logs B1, B4 and foundation sides. 

 

(2.5)      smsmsms kk
l

kk 121 η
 

 

where: 

k
1
sm and k

2
sm  Mean moduli of boring logs B1 and B2, respectively 

l   Distance between boring B1 and B2 

ε  Distance between the node and boring B1 

 

Type III 

One or more sides of the foundation and one boring confine this region. The modulus ks for a 

node lying in this region is equal to the mean modulus ksm of that boring. Figure 2.3 indicates an 

example for region type III through the area confined by boring B3 and foundation sides. 

 

 

 
 

Figure 2.3 Boring locations and region types 
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2.3.2 Determination of three-dimensional coefficient of flexibility ci, j 

 

In a similar way to the previous analysis for Winkler’s model, the foundation area is divided into 

the same three region types. Equation 2.4 for region type I can be rewritten as 

 

(2.6)      cybxac ji  , 

 

As by determination of the main moduli ksm for Winkler’s model, the main flexibility coefficients 

cm i, j are determined for boring logs. Then, the undetermined coefficients a, b and c in this case, 

are obtained from the mean flexibility coefficients cm i, j of the three boring logs and their 

coordinates (x, y). Equation 2.5 for region type II can be rewritten as 

 

(2.7)      jimjimjimji cc
l

cc  , 
1

 , 
2

 , 
1

 ,

η
 

 

where: 

c
1
m i, j  and c

2
n i, j  Mean flexibility coefficients of boring logs B1 and B2, respectively 

 

Region type III is the simplest one. The flexibility coefficient ci, j of this region is determined from 

the material of its corresponding boring. 

 

It is important to note that: 

 

- If only two boring logs define the subsoil under the foundation or the boring logs lie in

 the same line, region type I will be eliminated 

 

- However the above analysis of three dimensional subsoil is derived for isolated

 foundation, but it is also possible to use this analysis for system of footings or

 foundations as shown in Figure 2.4 
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Figure 2.4  System of three foundations I, II and III with two additional 

  external foundations IV and V on irregular subsoil 

 

 

2.3.3 Numbering of boring logs 

 

The arrangement of subareas or triangle regions leads to different results of modulus of subgrade 

reactions or flexibility coefficients. Therefore, a role may be used here to set the subareas for the 

subareas method or triangle regions for the interpolation method automatically. According to the 

role, defining a boring as pole for the other boring logs is necessary. This boring must be 

numbered by No. 1. Figure 2.5 shows different arrangements of triangle regions when five 

boring logs define the subsoil. 
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Figure 2.5 Different arrangements of triangle regions a) to e) 
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2.3.4 Determination of limit depth for irregular subsoil 

 

The assumption of isotropic elastic half-space soil medium requires an infinite soil layer having 

the same compressibility under the foundation. Practically, the soil consists of many layers with 

different soil materials. For layered soil medium the number of layers in a boring to be 

considered when determining the flexibility coefficient ci,k depends on the level of the rigid 

surface or on the limit depth zg where no settlement occurs. The limit depth zg in a system of 

foundations is the level of which the stress σU reaches a standard ratio ξ of the initial vertical 

stress σV as indicated in Figure 2.6 and Equation 2.8 

 

(2.8)      VU σ  ζσ  

 

where: 

σU = σE + σD Stress due to the foundation load and the external foundation loads [kN/m
2
] 

σE  Stress due to the foundation load [kN/m
2
] 

σD  Stress due to the external foundation loads [kN/m
2
] 

σV  = Σγz Stress due to the self-weight of the soil layers [kN/m
2
] 

γ  Unit weight of the soil layer [kN/m
3
] 

z  Depth of the soil layer [m] 

 

An examination from Amman/ Breth (1972) showed that the values ξ may be taken as ξ = 0.8, 

especially for reloading soil. The standard value of ξ according to DIN 4019 is ξ = 0.2. 

 

 

 
 

 

Figure 2.6 Limit depth zg under a foundation 
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The problem of the three-dimensional subsoil model is that many boring logs characterize the 

soil under the system of foundations. Kany/ El Gendy (1997) solved this problem for the three-

dimensional subsoil model. In which main limit depths for each foundation should be 

determined. Each limit depth corresponds to one of the soil boring logs and that foundation. It is 

determined from the material of that boring and the stress under that foundation. The soil 

pressures under foundations are assumed to be known and distributed uniformly on the bottom of 

the foundations. 

 

To take into account the irregularity of the subsoil material in x- and y-directions considering the 

effective soil layers, the flexibility coefficient ci,k must be determined using the limit depths. 
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Example 2.1 Analysis of a square raft on irregular subsoil 

 

1 Description of the problem 

 

This example is carried out to show the influence of irregular subsoil on the values of 

settlements, contact pressures and moments. 

 

The analysis of the square raft is carried out by the two familiar types of soil models: Winkler’s 

and Continuum models for elastic foundations, besides the analysis of rigid raft on Continuum 

model, using the following three calculation methods:  

 

Method 3 Variable modulus of subgrade reaction method 

Method 7 Modulus of compressibility method 

Method 8 Rigid raft on compressible subsoil 

 

A square raft of 10 [m] side is subdivided into 144 square elements as shown in Figure 2.7. The 

raft thickness is d = 0.4 [m]. 

 

 

2 Soil properties 

 

3 boring logs characterize the subsoil under the raft. Each boring has a soil layer of thickness 10 

[m], resting on a rigid base as shown in Figure 2.7. The modulus of compressibility Es represents 

the irregularity of the soil material in x- and y-directions, which in this example is chosen to be 

variable. The moduli of compressibility of the three borings are: 

 

Es1 = 6666.67 [kN/m
2
] 

Es2 = 1.5 × Es1 [kN/m
2
] 

Es3 = 2.0 × Es1 [kN/m
2
]  

with average value of Es = 10000 [kN/m
2
] 

 

The moduli of compressibility lead to the following mean moduli of subgrade reactions for the 

three borings: 

 

ksm1 = 1448  [kN/m
3
] 

ksm2 = 1.5 × ksm1 [kN/m
3
] 

ksm3 = 2.0 × ksm1 [kN/m
3
] 

with average value of ksm = 1563 [kN/m
3
] 

 

Possion’s ratio is νs = 0.3 for the soil material of the borings.  

 

 

3 Loads 

 

The external loads are chosen to be symmetrical about the raft center. The loads are four 

symmetrically loads, each of P = 500 [kN] as shown in Figure 2.7. The self weight of the raft is 

ignored. 
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Figure 2.7 a) Raft numbering, loading and dimensions  

   b) Soil cross-section 
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Figure 2.8 Boring  locations and subareas (Subareas method)   

 

 

 
 

Figure 2.9 Boring  locations and region types (Interpolation method)  
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4 Raft material 

 

The raft material is supposed to have the following parameters: 

  

Young’s modulus   Eb = 2 × 107 [kN/m
2
] 

Poisson’s ratio   νb  = 0.25   [-] 

Unit weight of raft material  γb  = 0.0   [kN/m
3
] 

 

Unit weight of raft material is chosen γb = 0.0 to neglect the own weight of the raft. 

 

 

5 Analysis of the raft 

 

For comparison, the flexibility coefficient and the modulus of subgrade reaction are determined 

by the following two methods: 

 

- Subareas method, Figure 2.8 

- Interpolation method, Figure 2.9 

 

 

6 Results and evaluation 

  

Figures 2.10 and 2.11 show the contour lines of settlements for each of the two types of soil 

models (Winkler's model 3 and Continuum model 7), while Figure 2.12 shows contour lines of 

settlements for the rigid raft on the Continuum model 8. The flexibility coefficients for the three 

calculation methods are obtained using the interpolation method. As expected, the settlement 

form is unsymmetric about the raft center when the irregularity of the subsoil is considered, 

although the raft is symmetric in shape and carries symmetrical loads. The Figures 2.10 to 2.12 

show that the boring which has minimum value of Es (boring B1) leads to higher settlements at 

nodes close to that boring. 

 

Figure 2.13 shows the contour lines of settlements when the soil is a regular layer having a 

constant value of Es = 10000 [kN/m
2
]. A comparison between Figure 2.12 and Figure 2.13 shows 

a great variation of settlement shape when using variable Es values. This means that the detailed 

variation of soil properties with vertical and horizontal directions must be taken into account. 

 

Figures 2.14 to 2.17 present a comparison between the results computed by the interpolation 

method and that of the subareas method. Figures 2.14 and 2.15 show the contact pressures at the 

edge of the raft (node 157 to 169) for the two types of soil models (Winkler’s model 3 and 

Continuum model 7), while Figure 2.16 shows the contact pressures at the edge of the raft for the 

rigid raft on Continuum model 8. Figure 2.17 shows the bending moments at the middle of the 

raft, section I-I, for Continuum model 7. From the above comparison, it can be concluded that 

the continuity requirement of the soil material between the adjacent borings is not met when 

using the subareas method. Therefore, it is expected that the results of the subareas method will 

not be as accurate as those of the interpolation method, especially if the borings have great 

differences in the soil material. This is explained in Figures 2.14 to 2.17 where the subareas 

method leads to a sudden change in the contact pressures and moments between two adjacent 

subareas. 
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Figure 2.10 Contour lines of settlements [cm] for Winkler’s model 3 

 

 

 

 
 

 

Figure 2.11 Contour lines of settlements [cm] for rigid raft on Continuum model 8 
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Figure 2.12 Contour lines of settlements [cm] for Continuum model 7 

 

 

 
 

 

Figure 2.13 Contour lines of settlements [cm] for Continuum model 7, constant Es 
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Figure 2.14 Contact pressures at the raft edge for Winkler’s model 3 

 

 

 
 

 

Figure 2.15 Contact pressures at the raft edge for Continuum model 7 
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Figure 2.16 Contact pressures at the raft edge for rigid raft on Continuum model 8 

 

 

 
 

 

Figure 2.17 Moments at the raft middle for Continuum model 7 
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Example 2.2 Analysis of an irregular raft on irregular subsoil 

 

1 Description of the problem 

 

A general example is carried out to show the applicability of the different mathematical models 

for analysis of irregular rafts on irregular subsoil. 

 

In one case the raft carries many types of external loads: concentrated loads [kN], uniform load 

[kN/m
2
], line load [kN/m] and moments [kN.m] in both x- and y-directions as shown in Figure 

2.18. 

 

 
 

 

Figure 2.18 Raft dimensions [m] and loads 

 

 

2 Soil properties 

 

Three boring logs characterize the subsoil under the raft. Each boring has three layers with 

different soil materials. The moduli of compressibility of the three layers for loading are Es1 = 

9500 [kN/m
2
], Es2 = 22000 [kN/m

2
] and Es3 = 120000 [kN/m

2
] while for reloading are Ws1 = 

26000 [kN/m
2
], Ws2 = 52000 [kN/m

2
] and Ws3 = 220000 [kN/m

2
]. Poisson’s ratio is 0.0 [-] for all 

soil layers. The level of foundation is df = 2.7 [m] while the level of ground water is GW = 1.5 

[m]. Unit weight of the soil above the ground water is γs = 19 [kN/m
3
] while under the ground 

water is γ´s = 9 [kN/m
3
]. The effect of reloading and water pressure is taken into account. Figure 

2.19 shows boring logs and locations. 
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Figure 2.19 a) Boring locations and interpolation regions 

b) Boring logs B1 to B3 
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3 Raft material and thickness 

 

The raft material is supposed to have the following parameters: 

 

Young’s modulus   Eb = 2 × 107  [kN/m
2
] 

Poisson’s ratio   νb  = 0.25   [-] 

Unit weight of raft material  γb  = 0.0   [kN/m
3
] 

Raft thickness    d  = 0.5   [m] 

 

Unit weight of raft material is chosen to be γb = 0.0 to neglect the own weight of the raft in the 

analysis. 

 

 

4 Analysis of the raft 

 

The analysis of the raft is carried out by the eight mathematical calculation methods in Table 2.1. 

The methods are represented by the three subsoil models: Simple assumption, Winkler’s and 

Continuum models. 

 

Table 2.1 Calculation methods 

 

Method 

No. 
Method 

 
1 

2 

3 

4 

5 

6 

7 

8 

 
Linear contact pressure 

Constant modulus of subgrade reaction 

Variable modulus of subgrade reaction 

Modification of modulus of subgrade reaction by iteration 

Modulus of compressibility method for elastic raft on half-space soil medium 

Modulus of compressibility method for elastic raft on layered soil medium (iter.) 

Modulus of compressibility method for elastic raft on layered soil medium (eli.) 

Modulus of compressibility method for rigid raft on layered soil medium 

 

 

To carry out a comparison for the different calculation methods and mathematical models, the 

example is analyzed first by the modulus of compressibility method 7 for layered soil medium. Then, 

the same example with the same loads is analyzed again by the other seven different numerical 

calculation methods. The elastic parameters are assumed to represent the same type of soil, which is 

considered in the first analysis. By weighing the elastic parameters of each layer in a multilayered 

system according to its influence on settlement an "equivalent" modulus of compressibility for the 

entire subsoil mass for isotropic elastic half-space model 5 and an "equivalent" constant modulus of 

subgrade reaction for Winkler’s model 2 are determined. Main moduli of subgrade reactions for the 

three boring logs can be also determined for Winkler's model 3. The equivalent elastic parameters 

can then be used to obtain the settlements, contact pressures, moments and shear forces in the raft by 

the different calculation methods.  
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The equivalent elastic parameters are: 

 

For isotropic elastic half space model 5 

Esm = 9500 [kN/m
2
] 

 

For constant modulus of subgrade reaction model 2 

ksm = 3517 [kN/m
3
] 

  

For variable modulus of subgrade reaction model 3 

ksm1 = 5254 [kN/m
3
] for Boring B1 

ksm2 = 2982 [kN/m
3
] for Boring B2 

ksm3 = 2315 [kN/m
3
] for Boring B3 

 

 

5 Results and discussion 

 

The extreme values of the results are given in Table 2.2. Figures 2.20 to 2.28 show the 

settlements and contact pressures on the raft for the eight calculation methods. 

 

Table 2.2 Maximum and Minimum values of settlements s and contact pressures q for the 

  different calculation methods 

 

Method No. 
smax. 

[cm] 

smin. 

[cm] 

qmax. 

[kN/m
2
] 

qmin. 

[kN/m
2
] 

 
Linear contact pressure  1 

Constant modulus of subgrade reactions  2 

Variable modulus of subgrade reactions  3 

Modification of modulus of subgrade  4 

Isotropic elastic half space  5 

Modulus of compressibility - elastic raft  6 and 7 

Modulus of compressibility - rigid raft  8 

 
- 

5.38 

6.52 

4.42 

11.28 

4.42 

4.24 

 
- 

0.46 

0.47 

1.15 

8.51 

1.15 

1.51 

 
127 

189 

194 

586 

572 

586 

560 

 
65 

16 

18 

19 

16 

19 

48 
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Figure 2.20 Contour lines of settlements [cm] and contact pressures [kN/m
2
]  

(in brackets for constant modulus of subgrade reaction method 2) 

 

 
Figure 2.21 Contour lines of settlements [cm] for variable modulus of subgrade reactions 3 
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Figure 2.22 Contour lines of settlements [cm] for isotropic elastic half-space model 5 

 

 
 

Figure 2.23 Contour lines of settlements [cm] for methods 4, 6 and 7 

3.50 

3.25 

1.50 

1.25 



Theory for the calculation of shallow foundations 

Chapter 2       Foundations on Irregular Subsoil 

 

 2 - 25 

 
 

Figure 2.24 Contour lines of settlements [cm] under rigid raft 8 
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Figure 2.25 Contour lines of contact pressures [kN/m
2
] by method 1 

 

 

 
 

Figure 2.26 Contact pressures [kN/m
2
] for isotropic elastic half-space model 5 
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Figure 2.27 Contact pressures [kN/m
2
] for methods 4, 6 and 7 

 

 

 
 

Figure 2.28 Contact pressures [kN/m
2
] under the rigid raft 8 
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Through Table 2.2 and Figures 2.20 to 2.28 the following conclusions can be drawn: 

  

- It is important to say that the linear contact pressure method 1 does not depend on the 

behavior of the subsoil mass below the foundation and there is no compatibility between 

raft deformation and soil settlement in this method 

 

- The elastic parameters for isotropic elastic half-space 5 and constant modulus of 

subgrade reaction 2 are valid for the whole subsoil mass but for the variable modulus of 

subgrade reaction 3 are variable from a node to another 

 

- For the two iteration methods 4 and 6 and rigid raft 8, the elastic parameters are the same 

as those of the first analysis method 7 and can be taken without any change 

 

- The influence of surrounding structures and external loads can be taken into 

consideration only for the Continuum model (methods 4, 5, 6, 7 and 8) 

 

- The influences of temperature change cannot be taken into consideration for the Linear 

contact pressure (method 1) 

 

- Furthermore, the influence of reloading can be taken into consideration only for the 

methods 4, 6, 7 and 8 

 

- The results of calculation of the rigid raft (method 8) do not change from the raft 

thickness d = drigid to d = ∞ 

 

- As from the assumption of the isotropic elastic half-space model 5, the soil under the 

foundation extends to an infinitely thick layer. The settlement will be similar in shape but 

greater in value to that of the layered model 7, Figures 2.21 and 2.23 

 

- The Continuum model (methods 4, 5, 6, 7 and 8) shows that the contact pressure is 

minimum on the middle of the raft and maximum at its edges, Figures 2.26, 2.27 and 

2.28 

 

- Figure 2.25 shows that the contact pressure for the Linear contact pressure (method 1) 

takes linear form under the raft 

 

- As from the assumption of Winkler’s model (method 2) the soil pressure qi at any point i 

will be equal to the settlement si at that point multiplied by the modulus of subgrade 

reaction ks. The contour lines of contact pressures will be similar to that of settlements, 

only the values of si should be multiplied by ks. Therefore, the contour lines of both 

contact pressures and settlements are plotted in a figure for the Winkler’s model 2 as 

shown in Figure 2.20 

 

- It can be seen from Table 2.2 that the maximum and minimum values of contact 

pressures for the Linear contact pressure, constant modulus of subgrade reaction and 

variable modulus of subgrade reaction are nearly the same. In addition, the maximum and 

minimum values of settlements for constant and variable modulus of subgrade reaction 

methods (methods 2 and 3) are nearly the same 
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Example 2.3 Analysis of system of footings on irregular subsoil 

 

1 Description of the problem 

 

The influence of irregularity of the subsoil material on the behavior of foundations is illustrated 

through the study of the differential settlements for a system of 9 footings. Consider the group of 

footings shown in Figure 2.29 and Table 2.3. Thickness of footings is d = 0.5 [m]. Unit weight of 

the footing is γf =25 [kN/m
3
]. Arrangement of footings and footing loads are shown in Figure 

2.29a. 

 

 

2 Soil properties 

 

The group of footings is resting on a three-dimensional subsoil model. Four boring logs 

characterize the subsoil under the footings. Each boring has three layers as shown in Figure 2.29 

and Table 2.4. Poisson’s ratio is νs = 0.3 [-] for all soil layers. The level of ground water is GW = 

1.3 [m], while the level of foundation for all footings is tf = 2.2 [m] under the ground surface. 

The effects of reloading and water ground are taken into account. Boring locations and section 

through B1-B2 are shown in Figure 2.29. 

 

Table 2.3 Loads, dimensions and origin coordinates of the footings 

 

Footing 

No. 

Load 

P [kN] 

Dimensions Origin coordinates 

Length 

[m] 

Width 

[m] 
x [m] y [m] β [°] 

 
1 

 
2500 

 
2.0 

 
2.0 

 
1.00 

 
1.00 

 
0 

 
2 

 
900 

 
1.5 

 
1.5 

 
6.25 

 
1.25 

 
0 

 
3 

 
800 

 
1.5 

 
1.5 

 
11.25 

 
1.25 

 
0 

 
4 

 
2500 

 
2.0 

 
2.0 

 
1.50 

 
6.00 

 
0 

 
5 

 
5400 

 
3.0 

 
3.0 

 
5.00 

 
6.00 

 
0 

 
6 

 
950 

 
1.5 

 
1.5 

 
11.25 

 
6.25 

 
0 

 
7 

 
5400 

 
4.5 

 
2.0 

 
2.12 

 
8.7 

 
45 

 
8 

 
3000 

 
2.5 

 
2.0 

 
5.75 

 
11.00 

 
0 

 
9 

 
2000 

 
2.0 

 
1.5 

 
10.00 

 
10.25 

 
0 
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Figure 2.29 a) Arrangement of footings, footing loads [kN] and boring locations 

  b) Section through B1-B2 
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Table 2.4 Soil material and layer levels for the four borings 

 

Layer 

No. 
Type of soil 

Layer level 

under the 

ground 

surface z [m] 

Modulus of elasticity for Unit weight 

of the soil 

 

γs [kN/m
3
] 

loading 

Es [kN/m
2
] 

reloading 

Ws [kN/m
2
] 

 
1 

 
Sand 

 
1.3 98 000 

 
135 000 

 
19 

 
2 

 
Sand 

 
12/11/14/10 

 
98 000 

 
135 000 

 
11.2 

 
3 

 
Silt 

 
40 

 
9 500 

 
12 000 

 
12 

 

 

3 Analysis and results 

 

Because the footing dimensions are relatively small, the footings may be treated as rigid footings 

resting on compressible subsoil. In this case, it is enough to determine the soil settlement at the 

footing centers. For a good judgment on the proposed analysis, the group of footings has been 

treated four times according to the following cases: 

 

i) The limit depths for all boring logs are obtained due to the maximum loaded footing 

(footing 5) 

 

ii) The limit depths for all boring logs are obtained due to the minimum loaded footing 

(footing 3) 

 

iii) Without limit depths: the last layer for each boring extends to a depth of 40 [m] below 

the ground surface 

 

iv) The limit depth is obtained through interpolation 

 

The limit depths are determined at the level of which the stress σU due to footings reaches the ratio δ 

= 0.2 of the initial vertical stress σV. The limit depths of boring B1 to B4 due to footing 3 are shown 

in Figure 2.30 while those due to footing 5 are shown in Figure 2.31. The limit depths for the 

maximum loaded footing (footing 5) are ranged from 16.90 [m] to 17.00 [m] while those for the 

minimum loaded footing (footing 3) are ranged from 11.31 [m] to 11.39 [m]. Table 2.5 shows the 

central settlements of the footings for the four cases. As expected, the numerical results show that 

the limit depths have a significant influence on the settlement of the footings. It can be seen from 

Table 2.5 that there is a great difference in the settlement values by applying the four cases. Case i) 

gives high values of settlement where that of case ii) is small and that of case iii) is very high. This 

proves that the interpolation analysis is a suitable procedure to study the interaction of a group of 

footings. Table 2.5 shows also that cases i) and ii) give only the accurate settlements under footings 

5 and 3, respectively. Where the settlement under footing 5 is s5 = 3.70 [cm] while that under footing 

3 is s3 = 0.48 [cm]. 
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Figure 2.30 Limit depths of boring logs B1 to B4 due to footing 3 
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Figure 2.31 Limit depths of boring logs B1 to B4 due to footing 5 
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Table 2.5 Central settlements of the footings 

 

Footing No. 

Calculation of central settlement [cm] based on 

Limit depths 

related to 

footing 5 

Limit depths 

related to 

footing 3 

Without limit 

depths 

z = 40 [m] 

Limit depths 

related to its 

corresponding 

footing 
 

1 
 

2.58 
 

0.91 
 

6.07 
 

1.74 

 
2 

 
2.55 

 
0.63 

 
6.19 

 
1.80 

 
3 

 
1.81 

 
0.48 

 
4.86 

 
0.48 

 
4 

 
4.15 

 
1.55 

 
8.35 

 
3.99 

 
5 

 
3.70 

 
1.45 

 
8.05 

 
3.70 

 
6 

 
2.30 

 
0.66 

 
5.91 

 
1.55 

 
7 

 
4.56 

 
1.94 

 
8.67 

 
4.34 

 
8 

 
3.48 

 
1.50 

 
7.59 

 
3.26 

 
9 

 
2.33 

 
0.96 

 
6.05 

 
1.72 
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3.1  Introduction 

 

In many situations, it becomes important to assess the behavior of a foundation due to its 

interaction with another neighboring foundation or external load. 

 

First, it must be distinguished between two types of problems concerning neighboring 

foundations: 

 

- The first problem occurs when a new building is constructed beside an existing one. 

In this case, the new building will cause an additional settlement under the existing 

structure due to the increase of stress in soil 

 

- The second problem occurs when structures are constructed simultaneously. 

In this case, there will be interaction of foundations due to the overlapping of stresses 

through the soil medium, although the structures are not statically connected. The 

interaction of foundations will cause additional settlements under all foundations 

 

The study of interaction between a foundation and another neighboring foundation or an external 

load has been considered by several authors. Mikhaiel (1978) presented an application on the use 

of the elastic half-space model in the determination of the effect of neighboring loads on the 

existing building. Selvadurai (1983) examined the interaction between a rigid circular foundation 

and an external load. 

 

The additional settlement due to neighboring foundations, external loads and buried structures 

can be considered as indicated in the next paragraphs. 

 

 

3.2  Influence of neighboring foundations 

 

Figure 3.1 shows a neighboring foundation B. This foundation causes an additional settlement on 

the examined foundation A. The additional settlement due to a neighboring foundation can be 

considered as follows: 
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Figure 3.1 Examined foundation A with a neighboring foundation B 

 

 

The presence of neighboring loads will cause additional settlements si.D at nodal points of the 

existing foundation. The additional settlement si.D at the nodal point i is given by 

 

(2.1)      





mr

nr

rnniDi Qcs
1

1 ,.   

 

where: 

ci, n+r Flexibility coefficient of the node i due to a unit load at node n + r [m/kN] 

Qn+r Contact force at node n + r [kN] 

r Node No. in the neighboring foundation B 

 

Due to the neighboring foundation, the total settlement on the foundation A can be expressed in 

matrix form as 

 

(2.2)           Do sss  

or 

 

(2.3)             DD QcQcs    

y 

oB 

n+1 

oA 

i 

x 

Examined foundation A 

A 
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yB 

xB 

yA 

βB 

βA 

xA 
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where: 

{s} Vector of the total settlement of the examined foundation A 

{so} Vector of the settlement due to stress of the examined foundation A 

{sD} Vector of the additional settlement due to stress of neighboring foundation B 

{QD} Vector of contact forces for the examined foundation A 

[c] Flexibility matrix of the soil for the examined foundation A 

[cD] Flexibility matrix of the soil due to the neighboring foundation B 

{QD} Vector of contact forces due to the neighboring foundation B 

 

Through inversion of the matrix [c], the following equation will be given 

 

(2.4)             Dss skskQ    

or 

 

(2.5)              DDss QckskQ     

 

Then, the system equation of the examined foundation A due to influence of neighboring 

foundation B in matrix form is 

 

(2.6)

     

            DDssp QckPkk   δ  

 

 

 

where: 

[kp] Plate stiffness matrix of the examined foundation A 

[ks] Soil stiffness matrix for the examined foundation A 

{δ} Vector of nodal displacements of the examined foundation A 

{P} Vector of applied loads on the examined foundation A 

 

 

3.3  Influence of buried structures 

 

Buried structures such as tunnels and culverts cause lowering of the ground. If a foundation 

exists above such structures, it will be affected by an additional settlement si.V at the node i due 

to vertical displacement through the influence of buried structures. 

 

Then, the total additional settlement si.A at the node i of the foundation due to external influences 

is 

(2.7)      DiViAi sss ...  
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Example 3.1 Settlement outside the foundation 

 

1 Description of the problem 

 

Besides the possibility of studying the influence of neighboring structures on the foundation by 

the program ELPLA, the described algorithm of ELPLA can be used also for the calculation of 

settlements outside the foundation. This can be carried out through one of the following two 

ways: 

 

i) Using a net for the foundation and the unloaded areas outside the foundation. Then, the 

rigidity of the unloaded areas can be eliminated by assuming very small thickness 

 

ii) Using two independent nets, one for the foundation and the other for the unloaded areas 

outside the foundation as considered in this example 

 

Figure 3.2 shows an irregular raft that has the contact area I with opening inside it. It is required 

to determine the settlements at the area II around the raft and at the opening of area III. 

 

 

2 Soil properties 

 

The raft of contact area I and the outside areas II and III are on regular subsoil. The soil is 

supposed to have the following parameters: 

 

Modulus of compressibility Es  = 9500 [kN/m
2
] 

Poisson’s ratio   νs   = 0.0 [-] 

 

The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s 

ratio for the soil is assumed to be zero. 

 

 

3 Raft material and thickness 

 

The raft material and thickness are supposed to have the following parameters:  

 

Young’s modulus   Eb  = 2 × 10
7
  [kN/m

2
] 

Poisson’s ratio  νb  = 0.25   [-] 

Unit weight   γb  = 0   [kN/m
3
] 

Raft thickness  d   = 0.7   [m] 

 

Unit weight of the raft material is assumed zero to neglect its own weight in the analysis. 

 

 

4 Loads 

 

The raft carries 12 concentrated loads as shown in Figure 3.2. 
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5 Mathematical model 

 

The influence of surrounding structures and external loads can be taken into consideration only 

for the Continuum model (methods 4, 5, 6, 7 and 8). The Continuum model bases on the 

settlement at any node is affected by the contact forces at all the other nodes. In this example, the 

Isotropic elastic half-space soil medium (method 5) is chosen to analyze the raft I and outside 

areas II and III. 

 

 

6 Analysis 

 

To carry out the analysis, the raft I and the outside areas II and III are subdivided into two 

independent element nets as shown in Figure 3.2b. Two independent names are chosen to define 

the data of the raft and the outside areas. The origin coordinates of the raft are (xo, yo) = (8.0, 

8.0), while for the outside areas are (0.0, 0.0). 

 

The analysis of the raft I is carried out to obtain the contact pressures under it first. Due to these 

contact pressures, settlements will occur not only under the raft I but also outside under areas II 

and III. Then, the settlements of the outside areas II and III are determined. 

 

 

7 Results 

 

Figure 3.3 shows the contact pressures under the raft I that cause the settlements under it and 

also at the outside areas II and III. Figure 3.4 shows the contour lines of the settlements under the 

raft. 

 

Figure 3.5a shows the settlement at the middle section s-s of the outside areas II and III, while 

Figure 3.5b shows the contour lines of the settlements. As it is expected, the greatest values of 

settlements are near the raft. 
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Figure 3.2 a) Section s-s through the raft 

b) Raft (area I) with loads [kN] and neighboring areas II and III 
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Figure 3.3 Contact pressures [kN/m
2
] under the raft 

 

 

 

 
 

 

Figure 3.4 Contour lines of settlements [cm] under the raft 
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Figure 3.5 a) Settlements of neighboring areas II and III at section s-s 

          b) Contour lines of settlements [cm] of neighboring areas II and III 
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Example 3.2 Influence of a new neighboring building II on an old one I 

 

1 Description of the problem 

 

For the explanation of the influence of a neighboring building, the influence of a new building on 

an existing old one is examined in this example.  

 

Figure 3.6 shows plan and section of a new building II beside a similar old one I. The building I 

was constructed since long time, while the building II will be constructed close to the first one. 

The two buildings have the same construction geometry and loads. Also, every building is 

symmetrical about both x- and y-axes. 

 

 

2 Soil properties 

 

The subsoil under the buildings consists of a layer of stiff plastic clay 5.70 [m] thick, overlying a 

rigid base (Figure 3.6a). The soil is supposed to have the following parameters: 

 

Modulus of compressibility for loading  Es = 5 000 [kN/m
2
] 

Modulus of compressibility for reloading  Ws = 15 000 [kN/m
2
] 

Unit weight      γs = 18   [kN/m
3
] 

Poisson’s ratio     s = 0.0  [-] 

 

The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s 

ratio for the clay is assumed to be zero. 

 

 

3 Foundation material and thickness 

 

Foundation material and thickness are supposed to have the following parameters: 

 

Young’s modulus   Eb  = 2 × 10
7
 [kN/m

2
] 

Poisson’s ratio   b  = 0.25  [-] 

Unit weight   γb = 0.0  [kN/m
3
] 

Foundation thickness   d = 1.0  [m] 

 

Unit weight of the foundation material is assumed zero to neglect its own weight in the analysis. 

 

 

4 Mathematical model 

 

The influence of surrounding structures and external loads can be taken into consideration only 

for the Continuum model (methods 4 to 9). The Continuum model bases on the settlement at any 

node is affected by the forces at all the other nodes. In this example, the Modulus of 

compressibility method (method 7) is chosen to analyze both of the two buildings. 
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5 Analysis 

 

To analyze the foundations, each foundation is subdivided into elements with 189 nodes as 

shown in Figure 3.6b. Two independent names are chosen to define the data of the two 

buildings. The data are quite similar for the two buildings except the origin coordinates, which 

are chosen to be (xo, yo) = (10.28, 0.0) and (0.0, 0.0) for buildings I and II, respectively. In spite 

of the two buildings are closed to each other, a small distance of 20 [cm] is assumed between 

them to avoid overlapping their nodes. 

 

The analysis of the new building II is carried out first to obtain the contact pressures under it.  

Due to these contact pressures, settlements will occur not only under the building II but also 

outside under the building I. Then, under the assumption that left beside the old building a new 

building will be constructed, the contact pressures, settlements and internal forces of the old 

building are determined. 

 

 

6 Results and evaluation 

 

Figure 3.7a shows the contact pressure distribution that was originally available under the old 

building. As it is expected, the contact pressures are distributed symmetrically, because the 

building was analyzed under the assumption that the loads are symmetrically applied. 

 

Figure 3.7b on the right shows the changes in contact pressures under the old building, while the 

opposite figure on the left shows the contact pressures under the new building. Through 

comparison it is to recognize that considerable differences occur in the contact pressure 

distribution under the old building. The contact pressures became smaller at the edge between 

new building and old building due to the additional settlements from the influence of the 

neighboring building. From equilibrium of the vertical forces, the contact pressures became 

larger in the middle of the old building. Of course, the change in contact pressure distribution 

under the building will cause also changing and shifting the stress of the old building. 

Accordingly, the moments of the old building will be affected. 

 

Figure 3.8a shows the settlements as contour lines under the old building I without the influence 

of the neighboring building. Because there is a centric resultant load, the settlements are 

symmetrical. 

 

Figure 3.8b on the right shows the settlements of the old building I and on the left the settlements 

of the new building II. As it is expected, the old building settled additionally at the edge to the 

new building. Consequently, the settlements are regressive on the right side of the old building. 

This means a tilt of the old building occurs. 

 

Figure 3.9 shows the settlements s, contact pressures q and moments mx at the middle of the 

foundations for both buildings I and II. 

  

From the results it is recognized furthermore, that the settlements at the edge nodes of the old 

building near to the new building increase strongly (Figure 3.9a). Therefore, the settlement 

increased from 4.79 [cm] to 7.31 [cm] at the middle of the foundation. 
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The influence of the neighboring building is very clearly noticeable in curves of Figure 3.9c. Due 

to the greatest positive moment (column moment with load P = 2000 [kN]), which increased 

from 787 [kNm/m] (only new building) to 654 [kNm/m], the sign of the field moment is 

changed. The field moment (only new building) reaches 20 [kNm/m], while with the influence of 

a neighboring building at the same node the field moment reaches -200 [kNm/m]. 

 

By these results you can now estimate the addition stress on the old building due to the influence 

of the new building and consequently prevent damages of the old building. 
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Figure 3.6 Action of new building II on the old building I 
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Figure 3.7 Contour lines of contact pressures [kN/m
2
] under the new and old buildings 
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Figure 3.8 Contour lines of settlements [cm] under the new and old buildings 
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Figure 3.9 Settlements, contact pressures and moments at the middle of the foundation 
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Example 3.3 Influence of ground lowering on a building due to a tunnel 

 

1  Description of the problem 

 

Figure 3.10 shows a raft of a building that consists of two rectangular parts, which are 

completely connected. The raft is 50 [cm] thick and has a foundation depth of 2.50 [m] under the 

ground surface. It is planned to construct a tunnel diagonally to the building axis. A primary 

estimation expects that the tunnel will cause a settlement trough of about 9 [m] width with a 

maximum lowering of 3 [cm] for the building ground. The settlement trough is plotted in Figure 

3.10 as contour lines, running symmetrically to the tunnel axis. The influence of the settlement 

trough due to construction of the tunnel is considered in the analysis of the raft. The raft carries 

two equal column loads, each of P = 18000 [kN] and line loads of p = 300 [kN/m] from edge 

walls. The edge walls have 0.30 [m] breadth and 3 [m] height.  

 

 

2 Soil properties 

 

The subsoil under the raft is defined by 3 boring logs B1 to B3 up to 14 [m] under the ground 

surface. The subsoil consists of two soil layers of clay and sandstone, which are not horizontally 

stratified as shown in Figure 3.10 and Table 3.1. Poisson’s ratio for the soil is νs = 0.3 [-]. 

 

Tabelle 3.1  Soil properties 

 

Layer 

No. 

Type of 

soil 

Depth of 

layer 

underground 

surface 

z [m] 

Modulus of compressibility of the 

soil for 

Unit 

weight of 

the soil 

 

γs [kN/m
3
] 

Loading 

Es [kN/m
2
] 

Reloading 

Ws [kN/m
2
] 

 
1 

2 

 
Clay 

Sandstone 

 
5.5/ 6.3/ 7.0 

14 

 
10000 

160000 

 
30000 

400000 

 
18 

21 

 

 

3 Raft material and properties 

 

The raft material is reinforced concrete and has the following properties:  

 

Young’s modulus  Eb  = 3 × 10
7 

[kN/m
2
] 

Shear modulus  Gb  = 1.25 × 10
7
 [kN/m

2
] 

Poisson’s ratio  b  = 0.2   [-] 

Unit weight   γb  = 25  [kN/m
3
] 

 

The rigidity of the edge walls (0.30 [m] breadth and 3 [m] height) is simulated through beam 

elements along the raft edge with the following data:  

 

Moment of inertia  I   = 0.675  [m
4
] 

Torsional inertia  J  = 0.0253  [m
4
] 
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4 Analysis of the raft 

 

The raft is subdivided into 112 square finite elements. Each element has a side of 1.5 [m] as 

shown in Figure 3.10. The analysis of the raft is carried out by the modulus of compressibility 

method (method 7). To consider the irregularity of subsoil under the raft, the flexibility 

coefficients are determined through bilinear interpolation. To examine the influence of the tunnel 

on the raft, the analysis of the raft is carried out first without consideration of the tunnel, then 

with consideration of the estimated settlements due to presence of the tunnel. 

 

 

5 Results and discussion 

 

The results of the settlements, contact pressures and moments are presented in Figures 3.11 to 

3.13. It can be concluded from the figures that: 

 

- The contact pressure under the columns become higher, while that at the field between

 columns become smaller 

 

- Due to the effect of the tunnel, the settlement under the raft at area above the tunnel will

 increase while the contact pressure will decrease. The change in the moment at this area

 is also remarkable 

 

- Moments become higher under the column, while that in the fields between columns

 become smaller. However, overall the change in the moments in this example is not great 
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Figure 3.10 a) Raft plan, settlement trough due to tunnel as contour lines and loads 

b) Boring logs B1 to B3 
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Figure 3.11 Settlements s [cm] without and with consideration of the tunneling 

  a) Contour lines 

  b) Section I-I 
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Figure 3.12 Contact pressures q [kN/m
2
] without and with consideration of the tunneling 

  a) Contour lines 

  b) Section I-I 
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Figure 3.13 Moments mx [kN.m/m] without and with consideration of the tunneling 

  a) Contour lines 

  b) Section I-I 
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4.1  Introduction 

 

In many practical cases, it becomes important to study the interaction of elastic or rigid 

foundations, which are constructed simultaneously. In this case, there will be interaction of 

foundations due to the overlapping of stresses through the soil medium however the structures 

are not statically connected. The interaction of foundations will cause additional settlements 

under all foundations. 

 

The conventional solution of this problem assumes that the contact pressure of the foundation is 

known and distributed linearly on the bottom of it. Accordingly, the soil settlements due to the 

system of foundations can be easily determined. 

 

This assumption may be correct for small foundations, but for big foundations, it is preferred to 

analyze the foundation as a plate resting on either elastic springs (Winkler’s model) or continuum 

model. In spite of the simplicity of the first model in application, one cannot consider the effect 

of neighboring foundations or the influence of additional exterior loads. Thus, because Winkler’s 

model is based on the contact pressure at any point on the bottom of the foundation is 

proportional to the deflection at that point, independent of the deflections at the other points. 

Representation of soil as Continuum model (methodes 4, 5, 6, 7 and 8) enables one to consider 

the effect of external loads. 

 

The study of interaction between a foundation and another neighboring foundation or an external 

load has been considered by several authors. Stark (1990) presented an example for the 

interaction between two rafts. Kany (1972) presented an analysis of a system of rigid 

foundations. In addition, he presented a solution of system of foundations considering the 

rigidity of the superstructure using a direct method (Kany 1977). Recently, Kany/ El Gendy 

(1997) and (1999) presented an analysis of system of elastic or rigid foundations on irregular 

subsoil model using an iterative procedure. 

 

This section presents a general solution for the analysis of system of foundations, elastic or rigid, 

using the iterative procedure of Kany/ El Gendy (1997) and (1999). 

 

 

4.2  Definition of system of foundations 

 

To describe the analysis of system of slab foundations, consider the example system of slabs 

shown in Figure 4.1. The system consists of three different slabs I, II and III. It is supposed to be 

constructed separately simultaneously. The three slabs are divided into square elements having r 

= rI + rII + rIII nodes. The node numbering and loads are defined in the global system of 

coordinate x-y as shown in Figure 4.1. The contact pressure qi at a node i is replaced by 

equivalent contact force Qi. Additional two external foundations IV and V are constructed after 

the system of the three slabs is carried out. Those two external foundations will provide an 

additional settlement si.A at a node i. 
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Figure 4.1 Plan of a system of three slabs (I to III) and two external foundations IV and V 

 

 

4.3  Summation equation of settlement 

 

For the set of grid points of the three slabs, the settlement si at a point i is defined by series of 

unknown contact pressures Qk as shown in Equation 4.1 

 

Ai

rk

k

kkii sQcs .

1

 , ) ( 

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     (4.1) 

 

where: 

ci, k Flexibility coefficient of node i due to a unit load at node k 

si.A  Additional settlement at that node due to external influences (foundations IV and V) 

 

 

4.4  Assembling the flexibility matrix 

 

The analysis of an isolated foundation on three-dimensional subsoil model, which was presented 

by Kany/ El Gendy (1995), may be used also here for the analysis of system of foundations. 

  

Assembling the total flexibility matrix for the system of slabs in Figure 4.1, which has total 

number of r = 145 nodes, requires to do r
2
 = 21025 settlement calculations through Equation 4.1 

(without external foundations IV and V). 
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Equation 4.1 can be rewritten in matrix form as 

 

 
 
 
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A

s

s

s

Q

Q

Q
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s

s
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  (4.2) 

 

where: 

{s}I Settlement vector of the slab I 

[c]I, J Flexibility matrix of the slab I due to contact pressure of slab J 

{Q}I Contact force vector of the slab I 

{sA}I Additional settlement vector of the slab I due to external influences  

 (foundations IV and V) 

 

Inverting the total flexibility matrix gives the total soil stiffness matrix as 
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  (4.3) 

 

 

4.5  Analysis of system of elastic foundations 

4.5.1  Assembling the system of linear equations 

 

For big foundations, the foundation is treated as a plate on elastic medium. From the finite 

element analysis of the plate, the equilibrium of foundation I is expressed by the following 

matrix equation 

 

       
IIII 

 δ QPk p       (4.4) 

 

 

In the same manner for foundation II 

 

       
IIIIIIII 

 δ QPk p       (4.5) 

 

 

and for foundation III 

 

       
IIIIIIIIIIII 

 δ QPk p       (4.6) 

 

 

where: 

{p}I, {p}II und {p}III  External force vectors of slabs I, II and III 

{δ}I, {δ}II und {δ}III  Deformation vectors of slabs I, II and II 

[kp]I, [kp]II und [kp]III  Plate stiffness matrix of slabs I, II and III 
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Equations 4.4, 4.5 and 4.6 are rewritten in matrix form as 

 

     
     
     

 
 
 

 
 
 

 
 
  


































































III

II

I

III

II

I

III

II

I

III 

II 

I 

δ

δ

δ

 

00 

00 

00

Q

Q

Q

P

P

P

K

K

K

p

p

p

  (4.7) 

 

Substituting Equation 4.3 into Equation 4.7 gives the following linear system equations in matrix 

form as 

 

     
     
     

 
 
 

 
 
 

     
     
     

 
 
 

 
 
  



















































































































III

II

I

III

II

I

1-

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III

II

I

III

II

I

III 

II 

I 

 

δ

δ

δ

 

00 

00 

00

A

A

A

p

p

p

s

s

s

s

s

s

ccc

ccc

ccc

P

P

P

K

K

K

   (4.8) 

 

Considering the compatibility of deformations between the slab and the soil medium, where the 

soil settlement s is equal to the slab deflection w, Equation 4.8 becomes 

 

     
     
     

     
     
     

 
 
 

 
 
 

     
     
     

 
 
  




















































































































III

II

I

1-

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III

II

I

III

II

I

-1

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III 

II 

I 

 

δ

δ

δ

 

00 

00 

00

A

A

A

p

p

p

s

s

s

ccc

ccc

ccc

P

P

P

ccc

ccc

ccc

K

K

K

 (4.9) 

 

The above system of linear equations can be solved by Gauss elimination method or by iterative 

procedure according to Kany/ El Gendy (1997). 

 

 

4.6  Analysis of system of rigid foundations 

4.6.1  Assembling the system of linear equations 

 

The settlement si of the slab I at a node i due to slab rigidity is expressed by the following linear 

relation (plane translation) 

 

.I.I.I θtan θtan xiyioi yxws      (4.10) 

where: 

wo.I Rigid body translation of slab I at the slab centroid 

θx.I  Rigid body rotation of slab I about the x-axis 

θy.I  Rigid body rotation of slab I about the y-axis 
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Equation 4.10 for slab I can be rewritten in matrix form 

 

     III Δ 
T

Xs       (4.11) 

 

where: 

{Δ}I Vector of translation wo.I and rotations tan θy.I and tan θx.I of slab I 

[X]
T

I Vector of coordinates x and y of slab I, [X]
T

I = [1, x, y] 

 

In the same manner for foundation II 

 

     IIIIII Δ 
T

Xs       (4.12) 

 

and for foundation III 

 

     IIIIIIIII Δ 
T

Xs       (4.13) 

 

Equations 4.11, 4.12 and 4.13 are rewritten in matrix form 

 

 
 
 

     
     
     

 
 
  























































III

II

I

III

II

I

III

II

I

 

 00

 00

 0 0

T

T

T

X

X

X

s

s

s

   (4.14) 

 

 

4.6.1.1  Equilibrium of the vertical forces 

 

For each of the three slabs, the resultant Ni due to external vertical forces acting on the slabs 

must be equal to the sum of contact forces, where 

 



















III3II2II1II

II3I2I1I

I

...

...

...

III

II

321I

rrrr

rrrr

r

QQQQN

QQQQN

QQQQN

  (4.15) 

 

 

4.6.1.2  Equilibrium of the moments 

 

For each of the three slabs, the moment due to resultant Ni about the y-axis must be equal to the 

sum of moments due to contact pressure forces about that axis, where 

 



















IIIIII3II3II2II2II1II1IIIII

IIII3I3I2I2I1I1III

III

 ...    

 ...    

 ...    

III

II

332211I

rrrrrrrrN

rrrrrrrrN

rrN

xQxQxQxQxN

xQxQxQxQxN

xQxQxQxQxN

 

 (4.16) 
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The equilibrium equations for moments about the x-axis are given by 

 



















IIIIII3II3II2II2II1II1IIIII

IIII3I3I2I2I1I1III

III

 ...    

 ...    

 ...    

III

II

332211I

rrrrrrrrN

rrrrrrrrN

rrN

yQyQyQyQyN

yQyQyQyQyN

yQyQyQyQyN

 

(4.17) 

 

Equations 4.15, 4.16 and 4.17 are rewritten in matrix form as 

 

 
 
 

     
     
     

 
 
  

















































III

II

I

III 

II 

I 

III

II

I

 

 00

 00

 0 0

Q

Q

Q

X

X

X

N

N

N

   (4.18) 

 

Substituting Equation 4.18 and 4.14 into Equation 4.3, gives the following linear system of 

equations in matrix form 

 

 
 
 

     
     
     

     
     
     

     
     
     

 
 
 

     
     
     

     
     
     

 
 
  









































































































































III

II

I

1-

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III 

II 

I 

III

II

I

III

II

I

1-

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III 

II 

I 

III

II

I

  

 00

 00

 0 0

 

 00

 00

 0 0

  

 00

 00

 0 0

A

A

A

T

T

T

s

s

s

ccc

ccc

ccc

X

X

X

X

X

X

ccc

ccc

ccc

X

X

X

N

N

N

 (4.19) 

 

The above system of linear equations 4.19 can be solved by Gauss elimination method or by 

iterative procedure according to Kany/ El Gendy (1999). 

 

Through solving the system of linear equations 4.19, get wo.I, tan θx.I , tan θy.I, wo.II, tan θx.II , tan 

θy.II , wo.III, tan θx.III and tan θy.III. Substituting these values in Equation 4.14, then substituting 

Equation 4.14 in 4.3, get the following matrix equation to find the n unknown contact pressure 

forces Q1 to Qr 

 

 
 
 

     
     
     

     
     
     

 
 
 

     
     
     

 
 
  









































































































III

II

I

1-

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III

II

I

III

II

I

-1

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III

II

I

 

 

 00

 00

 0 0

 

A

A

A

T

T

T

s

s

s

ccc

ccc

ccc

X

X

X

ccc

ccc

ccc

Q

Q

Q

 (4.20) 
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Substituting also the values wo, tan θx and tan θy in Equation 4.14, one can get the n settlements 

s1 to sr. 

 

 

4.7  Iterative procedure 

 

For practical problems the major difficulty to study a system of foundations lies in solving large 

set of equations, which requires large computer storage and long computation time. 

 

There are many iteration methods for the analysis of an isolated foundation in case of elastic 

foundation presented by Haung (1974), Ahrens/ Winselmann (1984), Stark (1990) and El Gendy 

(1994). These methods may be used here. 

 

In the program ELPLA, an iteration method is developed to solve the system of linear equations 

for system of both elastic and rigid foundations.  

 

The main idea of this method is that each foundation set of equations is solved alone and the soil 

stiffness matrix will be converted to equivalent symmetrical banded matrix in case of elastic 

foundations. This matrix is then simply added to that of the plate. As the plate stiffness matrix is 

also a banded matrix, the overall matrix can be solved by using the banded coefficients 

technique. 

 

A good advantage of this iteration method is that it requires much less computer memory than 

the elimination method or iteration methods, which treat the total system equations of the 

foundations as one unit.  
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Figure 4.2 Iteration cycle and flow chart of the iteration process 

Compute the average contact pressure 

Find the soil settlement so 

{ so}I = [c] I, I {Q}I 

Find the additional sr due to neighboring  

foundations or any other influences 
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J
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

        ,    
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Find the slab deformation w for 
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{w}I = [x]
T

I {Δ}I   

Find the vector {Δ} of the rigid body 

translation and rotations 

about x- and y-axes 

{N}I = [x]I [ks]I [x]
T

I {Δ}I -[x]I [ks]I {sr}I 

Find the total soil settlement s 

{s}I = {so}I +{sr}I 

No 

Yes 
End 

d 

Convergence reached w ≈ s 

Find the new contact pressure 

{Q}I = [ks] I {{w}I - {sr}I} 
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No 
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I =1 

I = N 
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equivalent symmetrical banded matrix [k´] 

Yes 

No 
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Example 4.1 Interaction of two circular rafts 

 

1  Description of the problem          

 

To illustrate the application of the iterative procedure of Kany/ El Gendy (1997) for the 

interactive system of foundations, consider the system of two equal large circular rafts shown in 

Figure 4.3. The rafts rest on a soil layer of 5 [m] thickness. Each raft has a diameter of 22 [m] 

and 0.65 [m] thickness. Loading on each raft consists of 24 column loads in which 16 columns 

loads have P1 = 1250 [kN] and 8 column loads have P2 = 1000 [kN]. The Young’s modulus of 

the raft material is Eb = 2.6 × 107 [kN/m
2
] and Poisson’s ratio is νb = 0.15 [-], while the soil 

values are Es = 9500 [kN/m
2
] and νs = 0.0 [-]. 

 

 

 
 

Figure 4.3 System of two circular rafts 

 

 

2  Analysis 

 

The analysis of the two rafts is carried out for two cases:  

 

i) without interaction between rafts 

 

ii) with interaction where the two rafts are constructed simultaneously 

 

Each raft is divided into 404 elements yielding 914 and 457 nodal points, for the calculations 

based on system of two rafts and the isolated raft, respectively. This generates 2742 and 1371 

simultaneous equations for the two calculation cases, respectively.  

 

To analyze the rafts as system of foundations, data of the two rafts are put in two separate files 

(Files ha1 and ha2). Besides, a third file contains information about the system of foundations 

(File h12). Data of the two rafts are quite similar except the origin coordinates, which are chosen 

(xo, yo) = (0.0, 0.0) and (22.5, 0.0) for rafts I and II respectively. 

Raft II Raft I 

P1 =1250 [kN] 

P2 =1000 [kN] 

a a P1 P1 

P2 P2 

y 

x 
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The maximum difference between the soil settlement s [cm] and the raft deflection w [cm] is 

considered as an accuracy number. In this example, the accuracy is chosen 0.01 [cm]. The results 

are obtained by using the iterative procedure of Kany/ El Gendy (1997) after only four cycles for 

both cases with and without interaction (only isolated raft). 

 

To show the speed of convergence of the iterative procedure of Kany/ El Gendy (1997), a 

comparison of it with modification of subgrade reaction by iteration method (Ahrens/ 

Winselmann (1984)) and that of El Gendy (1994) is carried out. The accuracy of computation is 

plotted against the iterative cycle number in Figure 4.4, for the three iteration methods where the 

analysis is carried out for an isolated raft. Figure 4.4 shows that the iterative procedure of Kany/ 

El Gendy (1997) converges more rapidly. 

 

 
 

Figure 4.4 Accuracy against the iterative cycle number for the three iteration methods 

 

 

3 Results and evaluation 

 

Figure 4.5 on the left shows the contour lines of settlements under the raft I without interaction 

of two rafts. As it is expected, the settlements are distributed symmetrically, because the raft was 

analyzed under the assumption that the loads are symmetrically applied. Figure 4.5 on the right 

shows the contour lines of settlements under the raft II considering the interaction of two rafts. It 

is recognized through comparison that considerable differences occurred in settlements under the 

raft II. The settlements of the raft II became greater at the edge between two rafts. 

 

Figure 4.6 shows the settlements s, contact pressures q and moments mx at the middle of raft II 

for both two cases with and without interaction. 
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From the results, it is recognized furthermore, that the settlements of the edge nodes of the raft II 

near raft I increase strongly (Figure 4.6a). Therefore, the settlement increased from 5.12 [cm] to 

7.75 [cm] at the middle of the raft. 

 

Figure (4.6b) shows that the contact pressure at the edge of the raft II near the raft I decreased 

from 70 [kN/m
2
] to 240 [kN/m

2
]. The contact pressures became smaller at the edge between two 

rafts due to the additional settlements from the interaction of them. From equilibrium of the 

vertical forces, the contact pressures became larger at the middle of the raft. Naturally, the 

change in contact pressure distribution under the raft will cause also changing and shifting in the 

stress of the raft. Accordingly, the moments of the raft will be affected. 

 

The interaction of the two rafts is clearly noticeable in moments mx (Figure 4.6c). The field 

moment mx near the raft I decreased from 87 [kN.m/m] to 7 [kN.m/m] while the field moment at 

the center of the raft decreased from 437 [kN.m/m] to 370 [kN.m/m]. 

 

 

 
 

 

Figure 4.5 Contour lines of settlements s [cm] under raft I without interaction 

and under raft II without interaction of two rafts 
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Figure 4.6 Settlements, contact pressures and moments at the middle of raft II 
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Example 4.2 Settlement behavior of four containers 

 

1  Description of the problem 

 

To verify the iterative procedure of Kany/ El Gendy (1997) and evaluate its accuracy for 

interactive large system of rigid rafts, consider the example 2 in the User’s Guide of program 

STAPLA (Kany (1976)). The computed settlements obtained from the iterative procedure are 

compared with those of program STAPLA (Kany (1976)). 

 

For a sewerage station, two isolated containers A and B were constructed simultaneously. Then, 

lately to extend the station another two isolated containers C and D would be constructed at the 

same area. Those two external C and D containers would provide an additional settlement on 

containers A and B. 

 

It is required to assess the tilting of each container and the settlement considering the interaction 

between the containers through the subsoil at the end of construction. The tilting and settlement 

of the containers are main factors for designing the pipe connections.  

 

 
 

 

Figure 4.7 a) Location of containers to each other  

b) Soil properties under the containers (STAPLA, Kany (1976)) 
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Figure 4.8 Division of the four circular rafts together into 26 fields (STAPLA) 

 

 

 
 

 

Figure 4.9 Division of the four circular rafts together into 1828 nodes (ELPLA) 
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2 Analysis 

 

Due to the big rigidity of the concrete containers, the containers may be treated as full rigid 

bodies. Therefore, the foundations are assumed rigid circular rafts. To assess the tilting of the 

circular rafts by the Program STAPLA (Kany (1976)), the circular rafts were subdivided into a 

coarse mesh of rectangular fields. The total number of the fields of the four circular rafts is 26 

fields as shown in Figure 4.8. The analysis is carried out to represent the final stage of 

construction (four containers). To reduce the computation time by the program STAPLA (Kany 

(1976)), the advantage of symmetry of the system of rafts about the y-y axis was considered in 

the analysis. In addition, equivalent square rafts were chosen instead of the two external circular 

rafts that would be constructed lately (containers C and D in Figure 4.7). 

 

By the iterative procedure of Kany/ El Gendy (1999), dividing the same system of rafts into 

many elements is possible. In the example, the circular rafts were subdivided into a finer mesh of 

rectangular elements. The total number of nodes was 1828 nodes for the four rafts as shown in 

Figure 4.9. 

 

 

3 Results and evaluation 

 

To evaluate the iterative procedure, the results of settlements at five selected points as shown in 

Figure 4.7 were compared in Table 4.1 with those obtained from the program STAPLA (Kany 

(1976)). The results were considered for the final stage of construction (four containers). 

 

It can be noticed from the comparison that there is relative difference between the results 

obtained by the iterative procedure and those obtained by the program STAPLA (Kany (1976)) 

for the five selected points. Through this comparison, it can be recognized that the settlements at 

a coarse fine subdivision of the raft exceed those at a fine subdivision of the raft by 4.1 [%] to 

6.4 [%]. On the other hand, subdividing the circular raft into many square elements could bitterly 

represent its dimension. The analysis of system of rigid rafts shown in Figure 4.7 was carried out 

by a personal computer (300 MHZ, 4.5 GB capacity, Win 95). The iteration process needed 

fewer than 2 Min. at accuracy 0.0012 cm after three cycles. 

 

Table 4.1 Comparison between settlements s [cm] obtained by STAPLA (Kany (1976)) and 

that by ELPLA 

 

Point 

Settlement s [cm] 

Relative difference [%] 

STAPLA New calculation 

 
1 

2 

3 

4 

5 

 
14.51 

14.91 

15.31 

14.44 

15.38 

 
13.74 

14.17 

14.61 

13.57 

14.78 

 
5.6 

5.2 

4.8 

6.4 

4.1 
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Example 4.3 Interaction of two rafts considering two additional footings 

 

1  Description of the problem 

 

Besides, the possibility of analysis of large foundation system with many elements by the 

procedure of Kany/ El Gendy (1997), the mesh of the rigid foundation can be generated in analog 

mode to the finite element mesh of the elastic foundation in one program. Comparing results 

from analysis of system of rigid rafts with those of elastic or flexible rafts with the same input 

data is possible. Subsequently the results of the three analyses are compared in an example. 

 

In this example, the settlements of structures due to interactive analysis of system of rigid, elastic 

and flexible rafts are studied. This example is chosen from Graßhoff/ Kany (1997). Two large 

rafts and additional two external footings are constructed near each other. The dimensions are 

shown in Figures 4.10 to 1.12 and Table 4.3. 

 

 

2  Soil properties 

 

The soil has two layers with different materials as shown in Figure 4.10 and Table 4.2. Poisson’s 

ratio is constant for both of the two soil layers and is taken νs = 0. The foundation level for the 

system of rafts is 1.3 [m]. 

 

Table 4.2 Soil properties 

 

Layer 

No. 

Type of 

soil 

Depth of 

layer 

underground 

surface 

z [m] 

Modulus of elasticity of the soil 

for 

Unit weight 

of the soil 

under GW 

 

γs [kN/m
3
] 

Loading 

Es [kN/m
2
] 

Reloading 

Ws [kN/m
2
] 

1 

2 

Silt 

Sand 

4.7 

15 

9000 

100000 

27000 

300000 

20 

- 

 

 

3  Raft material and thickness 

 

Raft material (concrete) and thickness were supposed to have the following properties: 

 

Young’s modulus Eb = 2 × 10
7
 [kN/m

2
] 

Poisson’s ratio  b = 0.25  [-] 

Raft thickness  d = 0.5  [m] 

Unit weight  γb = 0.0  [kN/m
3
]  

 

Young’s modulus Eb, Poisson’s ratio b and thickness d of rafts don’t play any role for the 

analysis of system of rigid rafts. The self weight of the raft is ignored. Therefore, unit weight of 

raft material is chosen γb = 0.0 to neglect the own weight of the raft. 
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Figure 4.10 Section 1-5 with layer profile, soil properties and node numbers 

  of superstructure Graßhoff/ Kany (1997) 

 

 

Table 4.3 Dimensions of rafts I and II and footings III and IV 

 

Foundation 
Length 

A [m] 

width 

B [m] 

Origin coordinates 

x [m] y [m] 

Raft I 

Raft II 

Footing  III  

Footing IV 

15 

8 

2 

4 

8 

12 

2 

3 

-1.5 

9.0 

21.0 
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-0.5 
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11.0 
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2
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Figure 4.11 Plan view for system of rafts I and II as well as the footings  III and IV 

Subdivision of the rafts: 43 fields (Graßhoff/ Kany (1997)) 
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Figure 4.12 Plan view for loads [kN] on the rafts I and II as well as the footings III and IV 

Subdivision of the rafts: 489 nodes (Calculation by ELPLA) 

 

 

4 Analysis 

 

For the space structure system shown in Figure 4.11, the settlements at all nodes on the rafts are 

determined. The analysis of the two rafts I and II with external footings III and IV was carried 

out at three different rigidities: 

 

1. System of flexible rafts 

2. System of elastic rafts  

3. System of rigid rafts 

 

With the same input data, the three analyses are carried out to allow a comparison. To represent 

the flexible foundations, the raft thickness is chosen d = 20 cm, while for elastic foundations the 

raft thickness is 50 [cm]. For rigid foundations, defining the raft properties is not necessary 

because the analysis treats the rafts as rigid bodies. 
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5 Results and evaluation 

 

Figures 4.13 to 4.15 show the settlements for the system of flexible, elastic and rigid rafts, while 

Figure 4.16 shows in one diagram, to good comparison, the settlements of the three analyses at 

section A-B. Through the comparison between the results of the analysis obtained by the 

program ELPLA and those obtained by Graßhoff/ Kany (1997), it can be recognized that the 

deformation and contact pressure considering superstructure rigidity are nearly similar to those 

obtained by the analysis of rigid rafts. 

 

From Tables 4.4 and 4.5 it can be seen that the superstructure rigidity has great influence on the 

rafts. 

 

The analysis of the system of rafts without interaction of foundations gives symmetrical 

deformation for all rafts at three different rigidities, because the loads are applied symmetrical on 

each raft. 

 

It can be recognized from the results that the settlements at the edge of structure I close to the 

neighboring structure II increase strongly. Therefore, the settlement of field 25 increases from 

3.25 [cm] to 3.39 [cm] in case 1 (flexible raft), from 2.59 [cm] to 2.77 [cm] in case 2 (elastic 

raft) and from 2.46 [cm] to 2.65 [cm] in case 3 (rigid raft). This means that design of the rafts 

must consider the effect of neighboring foundations. 

 

 
 

Figure 4.13 Contour lines of settlements s [cm] by analyzing as system of flexible rafts 
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Figure 4.14 Contour lines of settlements s [cm] by analyzing as system of elastic rafts 
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Figure 4.15 Contour lines of settlements s [cm] by analyzing as system of rigid rafts 

 

 

 

Figure 4.16 Settlements s [cm] at section A-B under raft I 

(with neighboring influence of building II and the two footings III and IV) 
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Table 4.4  Comparison between the analysis by Graßhoff/ Kany (1997) and ELPLA 

for settlements s [cm] under raft I (without neighboring influence) 

 

Type of analysis 
Graßhoff/ Kany (1997) New analysis 

Point 21 Point 25 Point 21 Point 25 

 
System of flexible rafts 

System of elastic rafts 

System of rigid rafts 

 
3.65 

3.04 

  2.78* 

 
3.65 

3.04 

  2.78* 

 
3.25 

2.59 

2.46 

 
3.25 

2.59 

2.46 

* Calculated as elastic raft with the superstructure 

 

 

Table 4.5  Comparison between the analysis by Graßhoff/ Kany (1997) and ELPLA 

for settlements s [cm] under raft I 

(with neighboring influence of building II and the two footings III and IV) 

 

Type of analysis 
Graßhoff/ Kany (1997) New analysis 

Point 21 Point 25 Point 21 Point 25 

 
System of flexible rafts 

system of elastic rafts 

System of rigid rafts 

 
3.66 

3.03 

  2.79* 

 
4.00 

3.51 

  3.16* 

 
3.27 

2.62 

2.50 

 
3.39 

2.77 

2.65 

* Calculated as elastic raft with the superstructure

 

 

Figure 4.13 shows that the analysis of flexible rafts leads to concentration of settlements on the 

nodes close to the applied loads. In the other extreme analysis case of rigid rafts, Figure 4.15 

shows a linear shape of contour lines for settlements due to the neighboring influence.  

 

The neighboring influence for the analysis of elastic rafts is also obvious in Figure 4.14. It can be 

concluded also from Figures 4.13 to 4.15 that although all rafts are supposed to symmetrical 

loading, the settlements are unsymmetrical. Unsymmetrical results are expected also for contact 

pressures and internal forces due to the neighboring influence. 
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Example 4.4 Interaction of two square rafts constructed side by side 

 

1  Description of the problem 

 

Settlement joints are usually used in the foundation when the intensity of loads on it differs 

considerably from area to another. In such case, the foundation may be divided corresponding to 

its load intensity to avoid cracks. A settlement joint is constructed by making a complete 

separated joint in the foundation or a hinged joint. If the foundation has a separated joint, each 

part will settle independently but it will be interaction between parts of the foundation through 

the subsoil. In the other case of hinged joint, there will be transmission of shearing forces 

between connection parts. 

 

This example is carried out to examine the interaction of two rafts considering settlement joint. 

Consider two equal square rafts I and II which will be constructed side by side. Each raft has a 

side of 12 [m] and 0.5 [m] thickness. Raft I is subjected to a uniform load of 400 [kN/m
2
], while 

raft II carries a uniform load of 200 [kN/m
2
]. 

 

 

2  Soil properties 

 

The rafts rest on a soil layer of thickness 10 [m], overlying a rigid base. The soil has the following 

parameters: 

 

Modulus of compressibility for loading Es  = 10 000 [kN/m
2
] 

Modulus of compressibility for reloading Ws  = 30 000 [kN/m
2
] 

Unit weight                          γs  = 18  [kN/m
3
] 

Poisson’s ratio                          s  = 0.3  [-] 

 

 

3  Raft material 

 

The raft material has the following parameters: 

 

Young’s modulus Eb  = 2 × 10
7 

[kN/m
2
] 

Unit weight          γb  = 25  [kN/m
3
] 

Poisson’s ratio  b  = 0.25  [-]
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Four cases concerning the influence of neighboring structures are considered as follows: 

 

Case 1:  Rafts I and II are constructed side by side at the same time. This case is examined 

for different distances c between the two rafts (Figure 4.17), where c = 0.0 [m], 

0.01 [m], 0.1 [m], 1.0 [m] and 10 [m] 

 

Case 2:  Raft I is constructed at first, then later the raft II. This case is examined for 

different distances c between the two rafts (Figure 4.17), where c = 0.0 [m],  

0.01 [cm], 0.1 [m], 1.0 [m] and 10 [m] 

  

 

Case 3:  Rather than rafts I and II, only one raft is constructed (Figure 4.18) 

 

Case 4:  Rafts I and II are connected by a hinged joint (Figure 4.19) 

 

 

4  Analysis 

 

The rafts are subdivided into square finite elements, each element has a side of 1.5 [m] as shown 

in Figures 4.17 to 4.19.  

 

The analysis of rafts in case 1 can be carried out through one of the following two ways:  

 

- Iteration by using two independent nets, one for raft I and the other for the  second raft II 

 

- Without iteration by using a net for the two rafts. The free distances between the rafts 

are carried out by inserting appropriate two elements between rafts. Then the boundary 

nodes of these elements are eliminated as considered in this example 

 

To carry out the analysis of rafts in case 2, two independent file names define the data of the two 

rafts are chosen. The data are quite similar for the two rafts except the loads and the origin 

coordinates. The origin coordinates are chosen (xo, yo) = (0.0, 0.0) for raft I and (xo, yo) = 

(12.0+c, 0.0) for raft II. Raft II is analyzed first to obtain the contact pressures and then raft I to 

consider the influence of neighboring raft II. 

 

To simulate a hinged joint between rafts in case 4 two very small elements are inserted between 

the rafts. Each element has 1 [cm] width and 5 [cm] thickness. The very small widths of the 

elements keep the distance between the rafts nearly zero, while the small thickness of the 

elements makes the raft rigidity at the joint very small. These boundary conditions allow 

interacting only the vertical forces between rafts. Moments at hinged connection will be 

eliminated due to the very small rigidity of connection elements. 
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Figure 4.17 Rafts I and II are constructed side by side (cases 1 and 2) 

 

 

 
 

Figure 4.18  Only one raft is constructed (case 3) 
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Figure 4.19 Rafts I and II are connected by a hinged joint (case 4) 

 

 

5  Results and discussion 

 

Figures 4.20 to 4.31 show the distribution of settlement, contact pressure, moment and shearing 

force at middle section a-a for the four cases of analyses. Tables 4.6 and 4.7 show the joint width 

c between the two rafts, settlements (s1, s2), contact pressures (q1, q2) at edges of the rafts (points 

1 and 2) and the differences (Δs, Δq) for cases 1 and 2. 
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Table 4.6 Settlements s1 and s2 at edges of rafts I and II and differences Δs 

 

Joint width 

c [m] 

Rafts I and II are constructed side by 

side at the same time (case 1) 

Raft I is constructed at first, then 

later raft II (case 2) 

s1 

[cm] 

s2 

[cm] 

Δs=s1-s2 

[cm] 

s1 

[cm] 

s2 

[cm] 

Δs=s1-s2 

[cm] 
 

0.00 
 

15.05 
 

14.71 
 

0.34 
 

17.87 
 

6.35 
 

11.52 

 
0.01 

 
15.12 

 
14.54 

 
0.58 

 
17.08 

 
6.35 

 
10.73 

 
0.10 

 
15.30 

 
13.70 

 
1.60 

 
17.24 

 
6.35 

 
10.89 

 
1.00 

 
14.73 

 
10.29 

 
4.44 

 
15.29 

 
6.35 

 
8.94 

 
10.0 

 
13.00 

 
6.16 

 
6.84 

 
12.99 

 
6.35 

 
6.64 

 
∞ 

 
13.10 

 
6.35 

 
6.75 

 
13.10 

 
6.35 

 
6.75 

 

 

Table 4.7  Contact pressures q1 and q2 at edges of rafts I and II and differences Δq 

 

 

Joint width 

c [m] 

Rafts I and II are constructed side by 

side at the same time (case 1) 

Raft I is constructed at first, then 

later the raft II (case 2) 

q1 

[kN/m
2
] 

q2 

[kN/m
2
] 

Δq=q1-q2 

[kN/m
2
] 

q1 

[kN/m
2
] 

q2 

[kN/m
2
] 

Δq=q1-q2 

[kN/m
2
] 

 
0.00 

 
669 

 
-133 

 
802 

 
444 

 
368 

 
76 

 
0.01 

 
664 

 
-119 

 
783 

 
529 

 
368 

 
161 

 
0.10 

 
644 

 
-53 

 
697 

 
495 

 
368 

 
127 

 
1.00 

 
653 

 
160 

 
493 

 
616 

 
368 

 
248 

 
10.0 

 
733 

 
367 

 
366 

 
733 

 
368 

 
365 

 
∞ 

 
733 

 
365 

 
368 

 
733 

 
368 

 
365 
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In general, it can be noticed from those figures that: 

 

Timeout of the construction process 

 

- Considerable differences will be expected in the results, if the analysis is carried out for 

system of rafts (case 1) or for construction of a new raft II beside an existing old one I 

(case 2) 

 

- If the two rafts are constructed side by side at the same time, both rafts will lean toward

 each other (Figure 4.21) 

 

- If raft I is constructed first and then raft II, there will be an additional pressure under raft I 

will cause an inclination of raft I in the direction of raft II (Figure 4.25) 

 

Settlement differences at the joint 

 

- For system of rafts (case 1), the settlement difference between rafts is relatively small at

 the joint for joint width c = 0.0 [cm]. The more settlement difference is for farther

 distance between rafts. In contrast, for the raft I with neighboring raft II (case 2) because

 of the pressure overlap from the neighboring raft II, the greater settlement difference is

 for the smaller joint width c (Figures 4.21, 4.25 and Table 4.6). This phenomenon occurs

 because the behavior of contact pressures of raft II has great influence on the

 settlement distribution of the raft I. Figures 4.20 and 4.24 show the contact pressure

 distribution for cases 1 and 2. The contact pressure of raft II for case 1 decrease by

 decreasing the width joint c, while for case 2 is independence from joint width c 

 

- Settlements at the edge of the raft I due to influence of neighboring raft II (case 2) are

 greater than those due to system of rafts (case 1) 

 

- Settlements from case 1 for joint width c = 0.0 [cm] and from cases 3 and 4 are quite

 similar (Figures 4.21 and 4.29) 

 

- If hinged joint between rafts is used (case 4), there will be continuation of settlement

 under the rafts (Figure 4.29) 

 

Contact pressures 

 

- For system of rafts (case 1) the contact pressure distribution under the raft I is almost

 independent of the joint width due to the heavy load of the raft I. On the other hand, for

 the raft II strong dependence on the joint width is to be found because the strong edge

 contact pressure of the raft I, which affects on the raft II (Figure 4.23 and Table 4.7) 

 

- Contact pressures at the edge of the raft I, if the raft I is constructed first and then the raft

 II (case 2), decreases by decreasing the width joint c (Figure 4.25) 

 

- Contact pressures from case 3 (rafts as one unit) and 4 (rafts with hinged joint) are nearly

 similar (Figure 4.28) 
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Moments 

 

- For system of rafts (case 1) the maximum moments for the raft I decrease by decreasing 

the joint width c, while for the raft II the sign of moment is changed from positive to 

negative in some places. The greater negative moment for raft II is for the smaller joint 

width c (Figure 4.22) 

 

- For case 2, if the raft I is constructed first and then the raft II, the maximum moments of

 raft I decrease by decreasing the joint width c. The positions of maximum moments are

 also shifted to the opposite direction of raft II (Figure 4.26) 

 

- It is clear from Figure 4.30 for rafts connected with hinged joint (case 4) that, the

 moment at the hinged joint for the two rafts is zero. Figure 4.30 shows for case 3 that a

 positive moment is to be found at the connection position. Raft II for both cases 3 and 4

 has a negative moment beside a positive moment 

 

Shearing forces 

 

- The change in shearing forces for the raft I in case 1 is less than that in case 2 (Figures

 4.23 and 4.27), while for the raft II in case 1 the singe of shearing force is changed from

 negative to positive at the edge of the raft. The greater positive shearing force for raft II is

 for the smaller joint width c (Figure 4.23) 

 

- For both cases 3 and 4 a positive shearing force at the connection is to be found (Figur

 4.31). Maximum shearing force is for hinged connection 

 
Figure 4.20 Contact pressures q at the middle section of rafts I and II 

(constructed at the same time) 
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Figure 4.21 Settlements s at the middle section of rafts I and II 

(constructed at the same time ) 

 
 

Figure 4.22  Moment mx at the middle section of rafts I and II 

(constructed at the same time) 
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Figure 4.23  Shear forces Qx at the middle section of rafts I and II 

(constructed at the same time) 

 
 

Figure 4.24  Contact pressures q at the middle section of rafts I and II 

(raft I is constructed first, then later raft II) 
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Figure 4.25  Settlements s at the middle section of rafts I and II 

(raft I is constructed first, then later raft II) 

 

 
 

Figure 4.26  Moment mx at the middle section of rafts I and II 

(raft I is constructed first, then later raft II) 
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Figure 4.27  Shear forces Qx at the middle section of rafts I and II 

  (raft I is constructed at first, then later raft II) 

 

 

 
 

Figure 4.28  Contact pressures q at the middle section of the rafts I and II (case 3 and 4) 
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Figure 4.29  Settlements s at the middle section of the rafts I and II (case 3 and 4) 

 

 

 
 

Figure 4.30  Moments mx at the middle section of the rafts I and II (case 3 and 4) 
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Figure 4.31  Shear forces Qx at the middle section of the rafts I and II (case 3 and 4) 
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Example 4.5 Analysis of a swimming pool 

 

1 Description of the problem 

 

A swimming pool is supposed to be constructed at a river. The existing ground around the pool has 

to be increased up to a meter. The pool has dimensions of 25 [m] × 10 [m] and maximum water 

depth of 1.20 [m] as shown in Figure 4.32. The foundation level is 1.45 [m] under the ground 

surface. Slab and walls are reinforced concrete of concrete grade B 25 with thickness of 25 [cm] for 

slab and 20 [cm] for walls. It is divided into two independent parts through a joint at the pool 

middle.

 

The filling material around the pool is non-cohesive soil (Figures 4.33 and 4.34). The filling is 

supposed to be carried out after finishing the pool. 

 

In this example, it is required to study the following: 

 

i)  Influence of the joint on the settlements, contact pressures and internal forces of the pool

 slab and the pool walls in case of the pool is completely filled by water 

 

ii)  Influence of the ground rising by additional filling soil material at the southern part of the

 pool on the settlement 

 

 

2  Soil properties 

 

The subsoil under the swimming pool is defined by five boring logs B1 to B5 up to 15 [m] under 

the ground surface. The subsoil consists of four soil layers of fill, silt with organic admixture, silt 

clayey and gravel, which are not horizontally stratified as shown in Figure 4.33 and Table 4.8. 

Poisson's ratio for the soil is νs = 0.3 [-]. Ground water level is 3.80 [m] under the ground 

surface. 
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Figure 4.32 Details of the swimming pool  
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Figure 4.33 Boring logs B1 to B5 with soil properties 
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Table 4.8 Soil properties 

 

Layer 

No. 

Type of 

soil 

Modulus of 

compressibility of the 

soil for 

Unit weight of the 

soil 

Loading  

Es 

Reloading 

Ws 

above 

GW 

γs 

under 

GW 

 γ´s 
 

1 

2 

3 

4 

 
Fill  

Silt, organic admixture 

Silt, clayey, soft 

Gravel 

 
70000 

4000 

450 

100000 

 
150000 

10000 

1000 

200000 

 
19 

17.5 

16 

20 

 
10 

7.5 

6 

11 

 

 

3 Raft material and properties 

           

The material of the raft and walls is reinforced concrete of grade B 25. It has the following 

properties: 

 

Young’s modulus Eb = 3 × 10
7
 [kN/m

2
] 

Shear modulus  Gb = 1.3 × 10
7
 [kN/m

2
] 

Unit weight   γb = 25  [kN/m
3
] 

Poisson’s ratio  b = 0.25  [-] 

 

 

4 Stiffness of edge walls 

 

The rigidity of the edge walls (thickness B = 0.2 [m], height H = 1.2 [m]) is simulated through 

beam elements along the raft edge with the following data: 

 

Moment of inertia I =
12

3H
B

 

    = 0288.0
12

2.1
2.0

3

   [m
4
] 

 

Torsional inertia J =




















4

4
3

12
1 21.0

3

1

H

B

H

B
BH

 

    =




















4

4
3

2.112

2.0
1 

2.1

2.0
21.0

3

1
2.02.1  

    = 0.0286   [m
4
] 
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5 Determination of settlements, contact pressures and internal forces 

5.1  Studying the influence of the joint 

 

Four cases concerning the influence of the joint are considered as follows:  

 

Case 1  Analysis without interaction (Figure 4.34) 

The two rafts are constructed side by side separately without interaction between 

them through the soil 

 

Case 2  Analysis with interaction but without shearing forces (Figures 4.34) 

The two rafts are constructed side by side separately with interaction only through 

the soil. The zero distance between the two rafts is represented by concrete 

elements of 1 [cm] wide and 0 [cm] thickness 

 

Case 3  Analysis with interaction and with shearing forces (Figure 4.36) 

The two rafts are connected through hinged joint. The hinged joint is represented 

by elements of 1 [cm] wide and 2 [cm] thickness 

 

Case 4  Analysis without joint (Figure 4.35) 

  Rather than two rafts, one raft is constructed 

 

 

5.2 Studying the influence of surrounding loading 

 

To study the influence of the surrounding loading on the swimming pool due to the filling soil 

material, the weight of the filling is represented by four loaded areas according to its weight 

intensity as shown in Figure 4.38 and Table 4.9. The loaded areas are subdivided into four 

independent nets. The analysis of these loaded areas is carried out firstly to obtain the contact 

pressures under them. Due to these computed contact pressures, the settlement will occur under 

the swimming pool. 

 

Table 4.9 Properties of the loaded area 

 

Loaded 

area 

No. 

Dimensions [m] Load 

 

p = γ h [kN/m
2
] 

Foundation 

level 

tf [m] 

Origin coordinate 

L B h x [m] y [m] 

1 3 35 0.75 19 × 0.75 = 14.25 1.5 -3 -6 

2 5 35 1.15 19 × 1.15 = 21.85 1.15 -3 -3 

3 8 5 0.40 19 × 0.40 = 7.6 0.4 27 2 

4 8 5 0.40 19 × 0.4 = 7.6 0.4 -3 2 
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Figure 4.34 Rafts I and II are connected by a hinged joint (case 3) 
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Figure 4.35 Rafts I and II are constructed side by side (cases 1 and 2) 

 

 

 
 

Figure 4.36 Rather than rafts I and II, only one raft is constructed (case 4) 
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6 Analysis 

6.1   General 

 

The rafts are subdivided into 640 square finite elements, each element has a side of 0.625 [m] as 

shown in Figures 4.34 to 4.36. The analysis of rafts in case 2 (analysis with interaction but 

without shearing forces) is carried out by using a net for the two rafts. The free distances 

between the rafts are carried out by inserting appropriate two very small elements between rafts. 

Each element has 1 [cm] width and 0.0 [cm] thickness. The very small widths of the elements 

keep the distance between the rafts nearly zero, while the zero thickness of the elements 

eliminates the raft rigidity at the joint. 

 

To simulate a hinged joint between rafts in case 3 (analysis with interaction and with shearing 

forces), two very small elements are inserted between the rafts. Each element has 1 [cm] width 

and 2 [cm] thickness. The very small widths of the elements keep the distance between the rafts 

nearly zero, while the small thickness of the elements makes the raft rigidity at the joint very 

small. These boundary conditions allow interacting of only the vertical forces between rafts. 

Moments at hinged connection will be eliminated due to the very small rigidity of connection 

elements. For all cases of analyses, the horizontal forces due to water pressure or earth pressure 

are neglected. 

 

 

6.2 Choice of the calculation method for studying the influence of the joint 

 

A primary analysis was carried out by the modulus of compressibility method (method 7). It was 

found that this method maybe causes numerical problems; these problems also occur when 

applying the modulus of compressibility method using iteration (method 6). The numerical 

problems were due to the light loads distributed uniformly on the pool in addition to stiff edges 

as a result to edge walls. Consequently, negative contact pressures occur by applying the 

modulus of compressibility method. Therefore, all analyses of the pool were carried out by 

Modification of modulus of subgrade reaction by iteration (method 4). The iteration process of 

the method is repeated till the difference between the results of the step i and those of the step of 

i +1 are nearly the same. In this example 20 steps were sufficient for the analysis. 

 

 

6.3 Choice of the calculation method for studying  

 the influence of the surrounding loading 

 

The loads from filling around the swimming pool (21.85 [kN/m
2
]) are higher than those acting 

on the swimming pool itself (12 [kN/m
2
]). Therefore, it is expected great settlements on the 

swimming pool due to the filling. In this case, negative contact pressures will be expected on the 

swimming pool.  
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6.4 Consideration of the irregularity of the subsoil material 

 on the behavior of the swimming pool 

 

The available information about the subsoil under the swimming pool is five boring logs B1 to B5. 

Each boring has four layers as shown in Figure 4.33 and Table 4.8. Arrangement of boring locations 

is shown in Figure 4.37. In order to carry out the analysis of the swimming pool taking into account 

the irregularity of the subsoil, the whole foundation area is subdivided into triangle zones as shown 

in Figure 4.37. Then, the flexibility coefficients are determined by Interpolation method. 

 

 
 

Figure 4.37 Locations of boring logs B1 to B5 with interpolation zones 
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Figure 4.38 Swimming pool with loads and external loaded areas 1 to 4 
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7 Results and discussion 

7.1 Studying the influence of the joint 

 

Figures 4.39 to 4.50 show the contour lines of settlements, isometric view of contact pressures, 

circular diagrams of moments for the four cases of analysis while Figure 4.51 shows settlements, 

contact pressures and moments at the middle section a-a. Figures 4.52 to 4.59 show the internal 

forces in the edge walls. 

 

In general, it can be noticed from those figures that: 

 

Settlements 

 

- Settlements at the edges (points 1 and 2) of the rafts with joints (cases 2 and 3) are 

 greater than that without interaction (case 1) and without joint (case 4), Figure 4.51a 

 

- Settlements for rafts with joints (cases 2 and 3) are nearly similar (Figures 4.40, 4.41 and

 4.51a) 

 

- If hinged joint between rafts is used (case 3), there will be continuation of settlement

 under the rafts (Figure 4.51a) 

 

- A continuation of settlement under the rafts with free joint (case 2) is also found, this

 related to the loads on both rafts are equal (Figure 4.51a) 

 

- The analysis of rafts with interaction showed that both rafts would lean toward each other

 (Figures 4.40 and 4.41) 

 

Contact pressures 

 

- If hinged joint between rafts is used (case 3), there will be continuation of contact

 pressure under the rafts at the joint (Figures 4.45 and 4.51b) 

 

- Slight differences in contact pressures at the edges (points 1 and 2) of the rafts with free

 joint (case 2) occur (Figure 4.44) 

 

Moments 

 

- Moments for rafts without interaction (case 1) and for the raft without joint (case 4) are

 much greater than that for rafts with joints (cases 2 and 3), Figures 4.47 to 4.50 and

 Figure 4.51c 

 

- For rafts with joints (cases 2 and 3), the positions of maximum moments are shifted to

 the center of the rafts (Figure 4.51c) 

 

- It is clear from Figure 4.51c for rafts with joints (cases 2 and 3) that the moment at the

 joints for the two rafts tends to zero 
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Internal forces in walls 

 

- Moments will be minimum if a raft with joint is used (cases 2 and 3), Figures 4.53 and

 4.54. Moments and shear forces for rafts without interaction (case 1) is unreal (Figures

 4.52 and 4.56) 

 

- For the raft without joint (case 4) a positive maximum moment at the position of

 connection is to be found (Figures 4.55), while for rafts with joints the moments are

 equal to zero at that position due to joints (Figures 4.53 and 4.54) 

 

- Moments and shear forces for the rafts with joints (cases 2 and 3) are nearly similar

 (Figures 4.53, 4.54, 4.57 and 4.58) 

 

Finally, it can be concluded that: 

 

- Considerable differences will be expected in the results, if the analysis is carried out for

 rafts without and with interaction 

 

- The results for the rafts with free joint (case 2) and with hinged joint (case 3) are nearly

 similar in this example 

 

- If rafts with free joint (case 2) have equal loads, only slight differences will be expected

 at the position of joint connection. Therefore, both of the two types of joints (hinged or

 free) may be used in this example 

 

- Although the rafts with joints (cases 2 and 3) lead to higher settlements than that without

 joints (case 4), but give less internal forces 

 

- The suitable foundation system may be used in this example is the rafts with joints (case

 2 or 3) 

 

 

7.2 Studying the influence of surrounding loading 

 

Figure 4.60 shows contour lines of the settlement under the swimming pool due to the 

surrounding loading only. As it is expected, the settlement at the edge of the swimming pool near 

the surrounding loading is about 2.5 [cm] greater than that due to the swimming pool itself 

(Figures 4.39 to 4.42) by application of the four cases of analysis concerning the joint. Figures 

4.61 to 4.64 show the contour lines of settlement under the swimming pool due to both loads 

from filling and swimming pool itself. These figures show that the direction of the settlements is 

changed toward the surrounding loading. To overcome extreme results concerning the internal 

forces on the swimming pool in this case, it is recommended that most of the filling must be 

carried out before constructing the swimming pool. 
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Figure 4.39   Contour lines of settlements s [cm] 

            Analysis without interaction (case 1) 

 

 

 
 

 

Figure 4.40 Contour lines of settlements s [cm] 

            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.41    Contour lines of settlements s [cm] 

            Analysis with interaction and with shearing forces (case 3) 

 

 

 
 

Figure 4.42    Contour lines of settlements s [cm] 

            Analysis without joint (case 4) 
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Figure 4.43 Isometric view of contact pressures q [kN/m
2
] 

            Analysis without interaction (case 1) 

 

 

 

 
 

 

Figure 4.44 Isometric view of contact pressures q [kN/m
2
] 

            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.45 Isometric view of contact pressures q [kN/m
2
] 

            Analysis with interaction and with shearing forces (case 3) 

 

 

 

 
 

 

Figure 4.46 Isometric view of contact pressures q [kN/m
2
] 

            Analysis without joint (case 4) 
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5 [kN.m/m] 10 [kN.m/m] 20 [kN.m/m]15 [kN.m/m]

 
 

Figure 4.47 Circular diagrams of moments mx [kN.m/m] 

            Analysis without interaction (case 1) 
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Figure 4.48 Circular diagrams of moments mx [kN.m/m] 

            Analysis with interaction and without shearing forces (case 2) 
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5 [kN.m/m] 10 [kN.m/m] 20 [kN.m/m]15 [kN.m/m]

 
 

Figure 4.49 Circular diagrams of moments mx [kN.m/m] 

            Analysis with interaction and with shearing forces (case 3) 
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Figure 4.50 Circular diagrams of moments mx [kN.m/m] 

            Analysis without joint (case 4) 
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Figure 4.51 Settlements, contact pressures and moments at middle section of rafts I and II 
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Figure 4.52 Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 

  Analysis without interaction (case 1) 

 

 

 
 

Figure 4.53    Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 

  Analysis with interaction and without shearing forces (case 2) 

 

 

 
 

 

Figure 4.54   Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 

  Analysis with interaction and with shearing forces (case 3) 
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Figure 4.55    Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 

            Analysis without joint (case 4) 

 

 

 
 

Figure 4.56 Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 

  Analysis without interaction (case 1) 

 

 

 
 

Figure 4.57    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 

  Analysis with interaction and without shearing forces (case 2) 
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Figure 4.58    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 

  Analysis with interaction and with shearing forces (case 3) 

 

 

 
 

Figure 4.59    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 

  Analysis without joint (case 4) 
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Figure 4.60    Contour lines of settlements under the swimming pool  

  due to the filling around it 
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Figure 4.61 Contour lines of settlements s [cm] 

  Analysis without interaction (case 1) 

  With influence of surrounding loading 

 

 

 
 

Figure 4.62 Contour lines of settlements s [cm] 

  Analysis with interaction and without shearing forces (case 2) 

  With influence of surrounding loading 
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Figure 4.63    Contour lines of settlements s [cm] 

  Analysis with interaction and with shearing forces (case 3) 

  With influence of surrounding loading 

 

 

 
 

Figure 4.64    Contour lines of settlements s [cm] 

  Analysis without joint (case 4) 

  With influence of surrounding loading 
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5.1 Introduction 

 

The foundation is considered as rigid, elastic or flexible, depending on the ratio between the 

rigidity of the foundation and the soil. The oldest work for the analysis of foundation rigidity is 

that of Borowicka (1939). He analyzed the problem of distribution of contact stress under 

uniformly loaded strip and circular rigid foundations resting on semi-infinite elastic mass. The 

analysis showed that the distribution of contact stress, which is dependent on the relative 

stiffness of the soil-foundation system, kB, is defined by 

 

(5.1)     
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where: 

vb  Poisson’s ratios for foundation material     [-] 

vs  Poisson’s ratios for soil       [-] 

Eb Young’s modulus of foundation material     [kN/m
2
] 

Es Modulus of elasticity of the soil      [kN/m
2
] 

b  Half-width of the strip foundation or radius of the circular foundation [m] 

d  Thickness of foundation       [m] 

 

kB = 0 indicates a perfectly flexible foundation and kB  = ∞ means a perfectly rigid foundation. 

 

After Borowicka’s analysis, many authors introduced formulae to find the foundation rigidity for 

plates resting on different subsoil models. For examples, Gorbunov/ Posadov (1959) introduced 

a formula for an elastic solid medium. Cheung/ Zienkiewicz (1965) introduced formulae for 

Winkler springs and isotropic elastic half-space model. Vlazov/ Leontiv (1966) introduced a 

formula for a two-parameter elastic medium. A good review for those formulae may be found in 

Selvadurai (1979).  

 

Lately, based on great number of comparative computations for the modulus of compressibility 

method, Graßhoff (1987) proposed various degrees of system rigidity between foundation and 

the soil until case of practical rigidity using Equation 5.2. The equation is still used in many 

national standard specifications such as German standard (DIN 4018) and Egyptian Code of 

Practice (ECP 196-1995) 

(5.2)      

3

 









l

d

E

E
k

s

b
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where: 

Eb Young’s modulus of the foundation material [kN/m
2
] 

Es Modulus of elasticity of the soil  [kN/m
2
] 

d  Foundation thickness    [m] 

l  Foundation length    [m]

 

kst ≥ 2 indicates a very rigid foundation, kst ≤ 0.005 indicates a flexible foundation and 0.005 < 

kst > 2 indicates a semi rigid foundation according to the Egyptian code of practice (ECP). While 

kst = 1 indicates a rigid foundation, kst = 0.1 indicates stiff foundation and kst = 0.01 indicates 

flexible foundation according to Graßhoff (1987). 
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It is noticed, that most of the available formulae used to determine the foundation rigidity 

assume that the footings or rafts have regular shape, supporting simple load geometry. Besides 

the soil model is an isotropic elastic half-space soil model or soil model of a homogenous layer. 

This means that the practical application of those formulae is limited to certain problems. Figure 

5.1 shows some practical problems where the use of traditional formulae may be not applicable 

for the analysis of foundation rigidity. Furthermore, the use of traditional formulae may be not 

acceptable if nonlinear analysis of the soil is considered, or if external influences such as the 

effect of tunneling, neighboring foundations are expected. 

 

It is found that the foundation rigidity depends on the depth of the soil layers and their elastic 

properties, foundation geometry, foundation material, foundation thickness and the distribution 

of loading. 

 

Recently, El Gendy (1998) and (1999) proposed accurate analysis to find the foundation rigidity, 

which can consider all the above factors. This analysis offers the possibility to find the rigidity of 

rafts having any shape considering holes, re-enter corners, variable thickness with different 

loading types and geometry and resting on irregular subsoil layers. The analysis deals with each 

foundation as an independent problem, in which two solutions are carried out, full flexible and 

full rigid, besides the elastic solution. Through those solutions, the system rigidity of foundation 

for any practical problem on a real subsoil model can be obtained for high accuracy. This 

analysis is described in the following section. 

 

 
 

Figure 5.1 Some practical examples where traditioal formulae may be not applicable 

Soil layer 1 

Soil layer 2 

d) Ribbed foundation c) Foundation with variable thickness 

a) Foundation on irregular subsoil  b) Grid foundation or foundation with opening 

Soil layer 3 
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5.2  Determination of foundation rigidity 

 

Today, the finite element method is the most powerful procedure. It can be applied to nearly all 

engineering problems. In spite of the successful using of the finite element method in the 

analysis of foundations, it may cause numerical problems during the solution of the system of 

linear equations if the foundation is rigid enough. It can be drawn in this problem that the 

foundation (if it is sufficiently thick and without eccentricity about both axes) will be far stiffer 

than the soil, so the displacements beneath the foundation will mostly be the same at all points. 

Here, assuming the foundation is perfectly rigid is reasonable. Accordingly, the two solutions, 

full flexible and full rigid, besides the elastic solution by finite element method are used to 

estimate the foundation rigidity or the rigid thickness of the foundation. 

 

 

5.2.1 Flexible solution 

 

This solution represents a foundation with zero [%] degree of system rigidity. If the foundation is 

perfectly flexible (such as an embankment), then the contact stress will be equal to the gravity 

stress exerted by the foundation on the underlying soil. 

 

For the set of grid points of the foundation, the soil settlements are given by 

 

(5.3)          Qcs   

where: 

{s} Vector of soil settlements 

[c] Flexibility matrix of the soil 

{Q} Vector of contact forces 

 

 

5.2.2 Rigid solution 

 

This solution represents a foundation that has 100 [%] degree of system rigidity. If the foundation is 

completely rigid, two forms for foundation settlement are expected: 

 

i) If the foundation is subjected to a centric load, all points on the foundation will settle the 

same value wo 

 

ii) If the foundation is subjected to an eccentric load, the foundation will rotate as a rigid body   

and there will be differential vertical movement between points on the foundation, but all 

points will remain in the same plane 
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For a completely unsymmetrical external loading, the unknowns of the interaction problem are 

the n contact pressures qi, the rigid body translation of the foundation wo and the rigid body 

rotations θxo and θyo of the foundation about the axes of the geometry centroid. Considering the n 

compatibility equations of rigid foundation translation and the settlement of subsoil at the n 

nodal points and the three equations of overall equilibrium gives the following equation 

 

(5.4)             Δ   
 T

s XkXN  

where: 

{Δ} Vector of rigid body displacement wo and the rigid body rotations θxo and θyo of the

 foundation 

[X]
T
 Coordinate matrix 

{N} Vector of the resultant forces and moments on the foundation 

[ks] Soil stiffness matrix 

 

 

5.2.3  Elastic solution 

 

This solution represents a foundation with degree of system rigidity between > 0 [%] and < 100 

[%]. The elastic solution considers the compatibility of deformations between the foundation and 

the soil medium. Here, the soil settlement s is equal to the foundation deflection w. The stiffness 

matrix of the whole foundation system is the sum of the foundation stiffness matrix [kp] and the 

soil stiffness [ks]. 

 

The following matrix equation expresses the equilibrium of the foundation-soil system 

 

(5.5)              Pkk sp  δ   

 

where: 

{P}  Vector of the known applied loads and moments on the foundation 

{δ}  Nodal displacements vector of the foundation. Each nodal displacement constitutes the 

foundation deflection w and the two rotations θx and θy about x- and y-axes, respectively 

 

 

5.2.4  Parameter kr 

 

The main cofactor in Equations 5.3, 5.4 and 5.5 is the displacement w, which here is equal to the 

soil settlement s. Therefore, the definition of the rigid body movement is used to find the rigid 

thickness of the foundation. In fact, if the foundation is completely rigid, it will rotate as rigid 

body and it will be differential vertical movement between points on the foundation but all 

points will remain in the same plane. Therefore, Equation 5.4 gives easily the plan of translation, 

which can be defined only by three points. Consequently, the elastic settlements (= foundation 

deformations) of any three points on the foundation can define the whole foundation form if 

compared with those of rigid translations at the same three points. 
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The parameter kr [%] at any three selected points at least on the foundation can be used to 

represent the foundation rigidity. This parameter is a function of the elastic settlement s and the 

rigid body translation w as given below 

 

(5.6)     1001 






 


i

i
r

w

s
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where: 

si  Settlement at point i 

wi  Rigid body translation at point i 

Δsi Absolute difference between si and wi at that point i 

 

The foundation may be considered practically rigid at a thickness (or system rigidity) gives kr 

more than 90 [%] for three selected points on it. 
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Example 5.1 Rigidity of a simple square raft 

 

1 Description of problem 

 
For comparison with complex foundation rigidity problems, no solution is yet available. 

Therefore, for judgment on the analysis of El Gendy (1998) to find the system rigidity of 

foundation, consider the simple example of raft foundation shown in Figure 5.2. The raft has 

dimensions of 12 [m] × 12 [m] and carries four symmetrical and equal loads, each of P = 9000 

[kN]. The raft rests on a homogenous soil layer of thickness 20 [m]. Young’s modulus of the raft 

and soil materials is Eb = 2 × 10
7
 [kN/m

2
] and Es = 10000 [kN/m

2
], respectively. Poisson’s ratio 

of the raft material is νb = 0.15. 

 

 
 

 

Figure 5.2 Raft dimensions, loads and subsoil 

 

 

Deninger (1964) studied the same example using the finite difference method by dividing the raft 

into 6 × 6 elements. Each element has dimensions of 2 [m] × 2 [m]. He examined the raft 

thickness for several values of 0.4, 0.5, 0.6, 0.8 and 2 [m]. 

 

The moment at any point on the raft foundation depends on the system rigidity of the foundation, 

external load values and load distributions. So, the moment mx at the position of the concentrated 

load, independent of rigidity formulae, can be used to find the rigid thickness of the raft in this 

example. Here, the raft is considered rigid at a thickness gives moment mx more than 90 [%] of 

the maximum moment that can occur at that point. 
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The raft in this example is considered rigid for thickness more than 0.85 [m] according to 

Deninger’s analysis. An application for Equation 5.2 to this example gives a system rigidity kst = 

0.71. So, the raft is considered very stiff according to system rigidity of Graßhoff (1987). 

 

 

2 Analysis and discussion 

 

Series of computations using the finite element method for several values of raft thickness are 

carried out. The moments and the settlements at some selected points are plotted against the raft 

thickness to describe the foundation rigidity. 

  

First, the raft is subdivided first into 24 × 24 square elements. Each element has dimensions of 

0.5 [m] × 0.5 [m]. Then, it is subdivided into 12 × 12 square elements. Each element has 

dimensions of 1 [m] × 1 [m] as shown in Figure 5.3. Taking advantage of the symmetry in shape, 

soil and load geometry about x- and y-axes, the analysis is carried out only for a quarter of the 

raft. 

 

 
 

Figure 5.3 Finite element meshes of the raft 

 

 

To show the convergence of the solution by finite element method and to verify the rigid 

thickness of the raft, the settlement s, at four characteristic points a, b, c and d on the raft and the 

rigid body translation wo when the raft is perfectly rigid, are plotted against the raft thickness in 

Figure 5.4 and 5.5. In which 
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Figure 5.4  Settlement at the four characteristic points using a mesh of 24 × 24 elements 

 

 

 
 

Figure 5.5 Settlement at the four characteristic points using a mesh of 12 × 12 elements 

 

 

Figure 5.6 shows the moment mx at point c under the concentrated load position using finite 

element mesh of 24 × 24 elements and 12 × 12 [m] elements, respectively. 
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Figure 5.6  Moment mx at characteristic point c 

 

 

Figure 5.4 indicates that, if a fine mesh of 24 × 24 elements is used, the solution for the raft 

thickness far 0.8 [m] will become divergence. In which no stability in the overall matrix occurs. 

As a result, if the foundation is rigid enough, the raft rotations will approach to zero and the raft 

will settle the same value of a displacement wo. Therefore, the number of equations becomes 

greater than the number of unknowns. Another problem may be found that the relation between 

the plate element thickness and element size is limited by application of the finite element 

method using plate-bending elements. 

 

Figure 5.5 shows that using a mesh of 12 × 12 elements gives good results. A comparison 

between Figure 5.4 and 5.5 indicates that, although the solution by using a fine mesh of 12 × 12 

elements is divergence, the rigid thickness of the raft can be determined because the limit of rigid 

translation is known from the rigid solution. 

 

Figure 5.6 shows that Deninger’s analysis cannot be used in case of using a fine mesh of 24 × 24 

elements, to find the rigid thickness of the raft where the position of maximum moment at point 

c is not clear in the figure. Further, for a raft with complex load geometry or types, using this 

analysis is not practical, which represents the rigidity of the foundation only at the selected point. 

 

Figure 5.7 shows the parameter kr for the four characteristic points a, b, c and d of the raft. 

Figure 5.8 shows the parameter kr for the same characteristic points if a uniform load of 250 

[kN/m
2
] replaces the external concentrated loads on the raft, which is equal to the average 

contact pressure, using also mesh of 12 × 12 elements. 

 

The raft may be considered as rigid at thickness gives kr more than 90 [%] for all characteristic 

points. 
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From Figure 5.7, the raft is considered rigid for thickness more than 0.80 [m]. The moment for 

this thickness mx is 93 [%] from maximum moment at point c. This thickness also is different 

from that of Deninger (1964) by 5.6 [%] and makes the raft very stiff according to Graßhoff 

(1987). 

 

According to this analysis, Figure 5.8 shows that the raft is considered rigid for thickness more 

than 0.7 [m] when it carries a uniform load of 250 [kN/m
2
]. This means that the type of loading 

has influence on the raft rigidity. Although the solution in this example is reported for a square 

raft, the approach can be also considered applicable for general problems.  

 

 

 
 

Figure 5.7 Parameter kr for the characteristic points (raft carries concentrated loads) 
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Figure 5.8 Parameter kr for the characteristic points (raft carries a uniform load) 
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Example 5.2  Rigidity of irregular raft on irregular subsoil 

 

1 Description of problem 

 
A general numerical example is carried out to show the applicability of system rigidity analysis, 

proposed by El Gendy (1998), to find the rigid thickness of rafts of any shape considering re-

entrant corner and opening within the rafts. 

 

In one case the raft carries many types of external loads; concentrated loads, distributed load, line 

load and moments in x- and y-direction as shown in Figure 5.9. The raft parameters are Young’s 

modulus Eb = 2 × 107 [kN/m2] and Poisson’s ratio νb = 0.25. Level of foundation is df = 2.7 [m]. 

 

 
 

Figure 5.9 Raft dimensions, loads 

 

 

The subsoil under the raft is characterized by three boring logs. Each has three layers with 

different materials. The moduli of compressibility of the three layers for loading are Es1 = 9500 

[kN/m
2
], Es2 = 22000 [kN/m

2
] and Es3 = 120000 [kN/m

2
] while for reloading are Ws1 = 26000 

[kN/m
2
], Ws2 = 52000 [kN/m

2
] and Ws3 = 220000 [kN/m

2
]. Poisson’s ratio is assumed 0.3 and 

constant for all soil layers. The effect of reloading and water pressure is taken into account. 

Boring logs and locations are shown in Figure 5.10. 

 

 

2 Analysis and discussion 

 

The available solution from Kany/ El Gendy (1995) for the analysis of raft foundations on three-

dimensional subsoil model using interpolation method is used here in the analysis of this general 

example. Four points on the raft are chosen to estimate the parameter kr, which represent the 

whole foundation rigidity as shown in Figure 5.10a. Figure 5.11 shows the parameter kr for these 

points. It can be seen that the raft is considered rigid for a thickness more than 1.01 [m]. 
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Figure 5.10 a) Boring locations and interpolation regions 
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Figure 5.11  Parameter kr for the characteristic points a, b, c and d 

 

 

Another parameter k´r similar to kr is obtained from the contact pressure shape. This parameter is 

plotted against raft thickness and for the 4 points in Figure 5.12. In which k´r is given by 
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where: 

qi  Contact pressure from elastic analysis at point i 

gi  Contact pressure from rigid analysis at point i 

Δqi Absolute difference between qi and gi at that point i 

 

Although Figure 5.12 gives a rigid thickness more than 1.05 [m] nearly as the same as that of 

Figure 5.11, but it is recommended to use kr in which the rigid movement plane can be described 

only by three points.  

 

To check the validity of the analysis for this example, the moments mx and my at point b are 

plotted against raft thickness in Figure 5.13. The moments at a raft thickness of 1.01 [m] are 

compared with the maximum moments that may occur at that point. It is found that both 

moments mx and my check closely, where the value of mx is 92 [%] from maximum mx while the 

value of my is equal to 95 [%] at the same point. 

  

Although the raft in this example has a constant thickness, but it can determine the foundation 

rigidity when the thickness is variable. In this case, the rigidity of the foundation may be 

determined through plotting the parameter kr against Young’s modulus of elasticity of the raft 

material Eb at several values of Eb. 
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Figure 5.12  Parameter k´r for the characteristic points a, b, c and d 

 

 

 
 

Figure 5.13  Moment mx and my at characteristic point b 
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Example 5.3 Effect of girders on the raft rigidity 

 

1  Description of the problem 

 

Ribbed raft may be used for many structures with heavy loads or large spans, if a flat level for 

the first floor is not required. Consequently, concrete is reduced. Such structures are silos and 

elevated tanks. In spite of this type of foundation has many disadvantages if used in normally 

buildings, it still is used by many designers. Such disadvantages are the raft needs deep 

foundation level under the ground surface, fill material on the foundation to make a flat level and 

an additional slab on the fill material to construct the first floor. The use of the ribbed raft relates 

to the simplicity of analysis by hand calculations. 

 

First, both of the two rafts with and without ribs are clearly save and correct, but there is still a 

question, whose one of the two types is more rigid? To answer this question the following 

example is presented. 

 

Consider the foundation of an elevated tank may be designed for both types of foundations. The 

foundation has the dimensions of 20 [m] × 20 [m] and transmits equal loads for all 25 columns, 

each of 1000 [kN]. The loads give average contact pressure on soil qav = 62.5 [kN/m
2
]. Columns 

are equally spaced, 4 [m] apart, in each direction as shown in Figure 5.14. 

 

 

 
 

Figure 5.14 General plan of rafts 

 

 

The analysis of the foundation is carried out to study the effects of soil types, rigidity of girders 

and slabs. A detail description of each parameter is presented as follows. 
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2  Soil 

 

Three subsoil models are considered:  

 

i)  Simple assumption model (conventional method) that assumes linear distribution 

 of contact pressure on the bottom of the slab. The model considers no interaction 

 between the raft and the subsoil 

 

ii)  Winkler’s model that represents the subsoil by isolated springs 

 

iii)  Layered model that considers the subsoil as continuum medium 

  

The raft resting on a soil layer of 20 [m] is equal to the raft side, overlying a rigid base. The soil 

types are represented by the modulus of elasticity Es, for layered model, which yields modulus of 

subgrade reaction ks for Winkler’s model. Table 5.1 shows the different soil types examined in 

this example according to the soil properties Es and ks. Poisson’s ratio is taken νs = 0.3 for all 

soil types. 

 

Table 5.1 Soil properties for different soil types 

 

Es [kN/m
2
] 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 

ks [kN/m
3
] 583 1166 1749 2332 2915 3498 4081 4664 5247 5830 

 

 

3  Concrete material 

 

The parameters of raft material are Young’s modulus Eb = 2 × 107 [kN/m
2
], Poisson’s ratio νb = 

0.25 and shear modulus Gb = 1 × 107 [kN/m
2
]. 

 

 

4  Girders 

 

A rectangular cross section is used for the girders with constant width of 0.40 [m]. The effect of 

girder rigidity is studied by varying its depth dg. Influence of the effective flange width of the 

slab on the moment of inertia of the girder is neglected. 

 

 

5  Slab 

 

For different chosen values of girder depth dg, the corresponding values of slab thickness are 

0.25, 0.30, 0.35, 0.40, 0.45 and 0.50 [m]. 
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6  Analysis and discussion 

 

The study of the raft is done for both cases, with and without girders. First the foundation is 

designed using working stress method according to the Egyptian code of practice (ECP), for 

concrete and steel grades fc = 60 [kg/cm
2
] and fs = 1400 [kg/cm

2
] respectively. The design is 

carried out using the classical method without interaction between the soil and the foundation. 

Through this design the dimensions of the raft with girders are slab thickness ds = 0.25 [m], 

girder depth dg = 0.85 [m] and girder width bg = 0.40 [m], while the thickness for the flat raft is 

dr = 0.55 [m]. The analysis is focused on the layered Continuum model, because it is more 

realistic than Winkler’s model for simulation of most soil types. 

 

 

6.1  System rigidity 

 

A good advantage of the foundation rigidity analysis, proposed by El Gendy (1998), is the possibility 

to find the system rigidity of rafts having any shape, such as ribbed rafts, considered in this example. 

Therefore, series of computations are carried out for many variables with the parameter kr obtained 

at the center of the raft, to compare between the system rigidity of the two types of rafts with and 

without girders. 

 

Figure 5.15 shows the parameter kr with the raft thickness ds in case of the flat raft while Figure 

5.16 shows the parameter kr with girder depth dg at different slab thickness in case of the ribbed 

raft. Both of the two figures are considered for soil of Es = 10000 [kN/m
2
]. 

 

 
 

Figure 5.15 Parameter kr with raft thickness at the center of the raft (Es =10000 [kN/m
2
]) 
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From these figures, it can be found that the flat raft of thickness dr = 0.55 [m] gives parameter kr 

= 60 [%] while the raft of slab thickness ds = 0.25 [m] and girder depth dg = 0.85 [m] gives 

parameter kr = 52 [%]. This means the ribbed raft designed by the classical method has rigidity 

less than that of the flat raft designed also by the same method. The ribbed raft, which gives 

parameter kr = 60 [%] equals to that of the flat raft, can be easily obtained from Figure 5.16. In 

which may be had one of the following dimensions in Table 5.2. 

 

Table 5.2 Dimensions of ribbed rafts, which give parameter kr = 60 [%] 

 

Slab thickness ds [m] 0.25 0.30 0.35 0.40 0.45 0.50 

Girder depth dg  [m] 1.25 1.20 1.15 1.10 0.90 0.75 

 

 

From Figure 5.16, it can be concluded that the slab thickness ds for rafts with a small girder dg 

has great influence on the system rigidity. This influence decreases by increase the girder depth 

dg until dg = 2.0 [m], then becomes constant. This means that the girders of depth dg > 2.0 give 

most the system rigidity. 

 

 
 

Figure 5.16 Parameter kr with girder depth at the center of the raft (Es = 10000 [kN/m
2
]) 
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The three rafts are: 

 

Raft 1  flat raft of thickness dr = 0.55 [m] 

Raft 2  ribbed raft with slab thickness ds = 0.25 [m] and girder depth dg =0.85 [m] 

Raft 3  ribbed raft with slab thickness ds = 0.25 [m] and girder depth dg =1.25 [m] 

 

Figure 5.17 shows that the rafts 1 and 3 that have the same system rigidity at soil type Es = 10000 

[kN/m
2
] have also the same system rigidities for all soil types. The range of the difference in kr 

of raft 2 and raft 1 (or raft 3) is 20 [%] to 5 [%] for weak soil of Es = 5000 [kN/m
2
] to medium 

soil of Es = 20000 [kN/m
2
]. This difference decreases slowly for Es > 20000 [kN/m

2
] with 

increase of Es until stiff soil of Es = 45000 [kN/m
2
], then kr of raft 2 becomes identical with that 

of raft 3. 

 

To show the influence of the soil types on the system rigidity of ribbed rafts, the parameter kr is 

plotted with the girder depth at different soil types as shown in Figure 5.18. The raft has 0.25 m slab 

thickness. From Figure 5.18, it can be noted that, the system rigidity of raft on weak soil increases 

quickly rather than that of raft on stiff soil with increase of girder depth. At a small depth dg, the 

difference in kr of raft on weak soil and that of raft on stiff soil is small. This difference increases 

slowly until depth dg = 1.75, then becomes nearly constant for the other depths more than 1.75 [m].  

 

 

 
 

Figure 5.17 Parameter kr with soil modulus Es at the center of the raft 
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Figure 5.18 Parameter kr with girder depth at different soil types at the center of the raft 

 

 

6.2  Effect of girders on differential settlement between columns 

 

The effects of the girder rigidity and the soil types on differential settlement are studied by 

comparing the differential settlement between central column cc and its adjacent column ca for the 

flat raft (raft 1) and ribbed rafts (rafts 2, 3). 

 

Figure 5.19 shows the differential settlement Δf with the soil rigidity represented by its modulus 

of elasticity Es. From Figure 5.19, it can be found that the differential settlement Δf decreases 

quickly with the increase of Es from Es = 5000 [kN/m
2
] to 10000 [kN/m

2
], then decreases slowly 

with the increase of Es from 10000 [kN/m
2
] to 50000 [kN/m

2
] for both raft types. This figure 

indicates also that the differential settlement Δf for ribbed raft coincides with that of flat raft if 

the two types have the same rigidity (rafts 1 and 3) for all soil types. It is clear that the ribbed raft 

designed by classical method (raft 2) has differential settlement higher than that of rafts with and 

without girders (rafts 1 and 3), which have the same rigidity in case of weak soil. The increasing 

in differential settlement for raft 2 reaches 33 [%] to 14 [%] compared with those of rafts 1 and 3 

in cases of soils have Es = 5000 [kN/m
2
] and Es = 10000 [kN/m

2
] respectively. However, for Es 

greater than 25000 [kN/m
2
] until for stiff soil the differential settlement for raft 2 becomes less 

than that of rafts 1 and 3. 
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Figure 5.19 Differential settlement Δf between columns with soil modulus Es 

 

 

6.3  Effect of girders on contact pressure 

 

The contact pressure under the ribbed rafts (raft 2 and 3) at section I-I for two soil types, weak 

and stiff, are compared with that of flat raft (raft 1). 

 

The soil modulus for weak soil is Es = 5000 [kN/m
2
] while for stiff soil is Es = 50000 [kN/m

2
] in 

case of layered model. The corresponding modulus of subgrade reactions for these two soil types 

are ks = 583 [kN/m
3
] and ks = 5830 [kN/m

3
] for weak and stiff soil respectively in case of 

Winkler’s model. 

 

Figure 5.20 shows the distribution of contact pressure at section I-I for Winkler’s model, while 

Figure 5.21 shows the distribution for layered model. The contact pressure according to the 

conventional method is plotted at the same figures. As the contact pressure distribution is similar 

to that of settlement distribution for Winkler’s model. Therefore, Figure 5.20 shows also the 

settlement at section I-I multiplied by the modulus ks. 

 

The effect of girders on the contact pressure is clear along the rafts for both Winkler’s and 

layered models. Such effect is very remarkable for weak soil, where the presence of girders 

increases the contact pressure under the girders. On the other hand, the girders decrease this 

contact pressure in the middle of the panels. Other figures, not included, show that the presence 

of girders leads to negative pressure at the corner of the raft in case of layered model for raft 2 of 

the less rigidity. The contact pressure of ribbed raft locates within the average range that of flat 

raft, if the two types have the same rigidity (rafts 1 and 3). This is obvious for stiff soil where 

may be coinciding with it. For the conventional method, the effect of girders plays no role on the 

contact pressure where is constant for all soil types and equal to the average load on the raft. 
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Figure 5.20 Contact pressure at section I-I for Winkler’s model 

 

 
 

Figure 5.21 Contact pressure at section I-I for layered model 
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Example 5.4 Comparison between raft and grid foundations 

 

1 Description of the problem 

 

El Arabi/ El Gendy (2001) examined the structural analysis and design of the three common 

foundation systems: raft, grid and isolated footings. They carried out the examination to evaluate 

the different types of structural systems in order to decide the most suitable ones for a specific 

situation. Here, an example is chosen from the above study with some modifications. Consider 

the foundation system shown in Figure 5.22, which may be designed as raft or grid. The raft 

dimensions are 30.5 [m] × 30.5 [m] while the overall grid dimensions are 33.0 [m] × 33.0 [m], 

with a constant strip width in both directions. The foundation carries 49 column loads, which are 

equally spaced, 5.0 [m] apart, in each direction. Column loads and the arrangement of columns 

are shown also in Figure 5.22. 

 
Figure 5.22 Foundation systems under consideration with loads 
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Both the raft and grid have the same uniform thickness d. The two foundations have the same 

contact area and column loads. Consequently, they will have the same average contact stress. 

Results are presented as functions of the ratio d/l, where l is the span between columns. For the 

sake of comparison, the volume of reinforced concrete of the entire foundation system whether 

raft or grid is kept unchanged. 

 

 

2 Concrete material 

 

The raft and grid are analyzed and designed for the following material parameters: 

 

Concrete grade   C 200 

Steel grade    S 36/52 

Concert cube strength   fcu = 200 [kg/cm
2
] 

Compressive stress of concrete fc = 8  [kg/cm
2
] 

Tensile stress of steel   fs = 1800 [kg/cm
2
] 

Young’s modulus of concrete  Eb =2 × 10
7
 [kN/m

2
] 

Poisson’s ratio of concrete  νb = 0.20 

Unit weight of concrete  γb = 0.0 [kN/m
3
] 

 

Unit weight of concrete is chosen γb = 0.0 to neglect the own weight of the foundations. 

 

 

3 Soil properties 

 

The effect of the soil type is represented by changing the modulus of compressibility Es. 

Poisson's ratio and the unit weight of the soil are taken as νs = 0.3 and γs = 18 [kN/m
3
] 

respectively for all soil types. Four different soil types are examined according to the soil elastic 

parameter Es, in which Es = 5, 10, 20, and 40 [MN/m
2
]. The thickness of the soil layer is 

considered according to the limit depth of the soil layer. 

 

 

4 Results and analysis 

 

It should be noticed that each of the two structural systems described above is valid as a 

foundation system for the problem under consideration. The raft and grid have the same average 

contact pressure on the soil, qav = 64 [kN/m
2
] and the same loading system. Accordingly, their 

contact areas are equal, Ar = 930.25 [m2]. Although the allowable bearing capacity (equal to 

average contact pressure) is always used to determine the foundation area, the maximum 

permissible settlement smax allover the foundation governs the allowable bearing capacity of the 

soil, especially for great foundation such as in this example. 

 

The analysis is carried out to study the effects of soil type and foundation thickness on the 

foundation behavior. The main results are the system rigidity, soil settlement, differential 

settlement, angular distortion, bending moments and the optimal thickness of foundation. A 

detailed description of the influence of each parameter is discussed in the following sections. 
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4.1 Limit depth ts 

 

The level of the soil under foundation at which no settlement occurs or the expected settlement 

will be very small where it can be ignored is defined as the limit depth of the soil. In this 

example, the limit depth is chosen to be the level at which the stress in the soil σE, resulting from 

the foundation pressure at the contact surface with soil, reaches the ratio ξ = 0.1 of the initial 

vertical stress σV. The stress in the soil σE is determined at the center of the foundation. As 

mentioned before, the average stress resulting from the foundation pressure at the surface is σo = 

64 [kN/m2] for both the raft and grid (own weight of foundation is neglected). Results of the 

limit depth calculation are shown graphically in Figure 5.23. The computed limit depth is ts = 

19.53 [m] for raft and ts = 18.93 [m] for the grid under the ground surface. Figure 5.23 also 

shows that the stress on the soil due to the grid is less than that of the raft. This is because the 

grid foundation has a wider extension at the contact surface with the soil associated with many 

unloaded spots among the grid strips. The interaction between the stress fields in this case leads 

to better stress distribution in the subsoil than the case of raft foundation. Accordingly, it can be 

said that the grid system might give better solution when the building is constructed on a ground 

that contains weak soil layers at a relatively deep level. Moreover, the discontinuity of the grid 

system allows for drainage at the ground surface, which can lead to better consolidation behavior 

if a clay layer exists under the foundation. In such circumstances, it is recommended to 

investigate the settlement behavior of the system. 

 

 
 

 

Figure 5.23 Limit depth ts of the soil under both the raft and grid 
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4.2 System rigidity 

  

Figures 5.24, 5.25 and 5.26 show the variation of the parameter kr with the ratio d/l for raft and 

grid at the center for different soil types. From those figures, it is clear that all systems become 

more rigid for all types of soil as the foundation thickness increases. The foundation contribution 

into the whole system rigidity becomes higher as the soil becomes weaker. For instance, a raft of 

90 [cm] thickness (d/l = 0.18) Figure 5.24, gives a rigidity parameter for the raft kr = 62, 66, 76, 

and 83 [%] for Es = 40, 20, 10 and 5 [MN/m
2
] respectively while for the grid gives kr = 35, 41, 

48, and 59 [%] for Es = 40, 20, 10 and 5 [MN/m
2
] respectively. It is also clear that, as the soil 

becomes weaker as the foundation thickness for a given rigidity, kr becomes smaller. Figure 5.26 

shows a comparison between the rigidity parameters kr for the raft and grid systems when Es = 

10 [MN/m
2
]. It can be seen that for the same type of soil and a given depth ratio d/l, the raft 

gives maximum system rigidity if compared with the grid. The difference in rigidity between the 

two systems is about 25 [%] for all values of the ratio d/l. 

 

 
 

Figure 5.24 Variation of kr at the center of the raft with the ratio d/l for different soil types 
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Figure 5.25 Variation of kr at the center of the grid with the ratio d/l for different soil types 

 

  

 
 

 

Figure 5.26 Variation of kr at the foundation center with the ratio d/l 

  for soil of Es = 10 [MN/m
2
]  
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4.3 Differential settlement and soil settlement 

 

The influence of foundation rigidity and the soil type on the settlement is given in Figures 5.27 to 

5.30. In Figure 5.27 and 5.28, the maximum differential settlements between adjacent columns 

are plotted as functions in the ratio d/l for the two different foundations. Figures 5.29 and 5.30 

show, respectively, maximum differential settlements and the central settlement for raft and grid 

when the soil has Es = 10 [MN/m]. It can be seen that the differential settlement decreases with 

the increase of foundation thickness for the two types of foundations, especially for weak soil. 

As it is expected, the weaker the soil, the bigger is the differential settlement. Raft system is the 

most efficient system in resisting the differential settlement and declining the settlement. The 

difference between the deferential settlement of the raft and that of the grid decreases when the 

foundation thickness increases. Figure 5.30 shows that the difference between the central 

settlement of the raft and that of the grid is about 0.7 [cm] for all ratios d/l. 

 

 
 

Figure 5.27 Maximum differential settlement between adjacent columns  

  with the ratio d/l for the raft 
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Figure 5.28 Maximum differential settlement between adjacent columns  

  with the ratio d/l for the grid 

 

 

 
 

Figure 5.29 Maximum differential settlement between adjacent columns with the ratio d/l for 

  soil of Es = 10 [MN/m
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Figure 5.30 Settlement at foundation center with the ratio d/l for soil of Es = 10 [MN/m
2
]  

 

 

4.4 Angular distortion 

 

In this analysis, the angular distortion 1/Lij between any two nodes i and j on the foundation is 

defined according to Hemsley (1998) as 

 

(5.1)      
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ij L

ss
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
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1
 

 

where: 

si and sj Nodal settlements 

lij  Distance between the nodes i and j 

 

Relative to any "primary node" i (1 ≤ i ≤ n), it is a simple matter to scan all the remaining (n - 1) 

nodes on the surface element mesh to locate the "secondary node" j associated with the 

maximum angular distortion. This procedure is repeated for each node in the mesh to give n 

values of maximum distortion, denoted by 1/Ln. 

 

Figures 5.31 and 5.32 show the contour lines of nodal angular distortion 1/Lij for raft and grid for 

different soil types. Moreover, a comparison between the limiting contour values for raft and grid 

is given in Table 5.3. The thickness of the raft and grid is d = 0.5 [m].  For the same soil 

conditions, the angular distortion is more considerable in the grid if compared with the raft. The 

stiffening effect of ribs reduces the grid distortion as can be seen clearly from Table 5.3. 
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Table 5.3 Maximum and minimum contour values for raft and grid 

 

Foundation system 

Contour values of angular distortion reciprocal (1/Lij) 

Es [kN/m
2
] 

5000 10000 20000 40000 

Max. Min. Max. Min. Max. Min. Max. Min. 

Raft 220 150 410 270 775 500 1500 800 

Grid 165 115 310 210 625 400 1250 700 

 

 

 

 
 

Figure 5.31 Contour lines of nodal angular distortion for a raft of 0.5 [m] thickness 
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Figure 5.32 Contour lines of nodal angular distortion for a grid of 0.5 [m] thickness 

 

 

4.5 Optimal thickness 

 

In this study, the optimal thickness is defined as the minimum thickness of foundation for which 

the concrete section and tensile reinforcement are enough to resist the flexure moments without 

compressive reinforcement. The optimal design of reinforced concrete sections is based on the 

provisions of ECP 464 (1989) for working stress method. In this case, the maximum moment 

Mmax and the sustained moment Ma for the system under consideration are calculated for 

different values of the thickness t (t = d + 5 [cm] cover). The maximum moment Mmax resulting 

in the foundation is obtained from foundation analysis. 

 

The sustained moment Ma for singly reinforced section according to working stress method is 

obtained from 
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where: 

c Concrete cover plus the radius of reinforcement bars 

B Width of the section to be designed 

k1 Coefficient for design of singly reinforced sections as given by code 
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The minimum thickness of foundation is obtained when both moments Mmax and Ma are equal. The 

optimal thickness of raft and grid is designed for the maximum moment obtained from the analysis. 

The maximum moment Mmax and the sustained moment Ma are calculated for the raft and grid at 

different values of the foundation thickness and for various types of soil. Sustained moments are 

calculated according to the working stress method of ECP 464 (1989). The Results are given in 

Figures 5.33 and 5.34. According to the results, the bending moments increase as the foundation 

thickness increases and as the soil stiffness decreases as well. This is because the layered model used 

in the analysis strongly depends on the soil properties.  

 

The optimal thickness of raft and grid resting on different types of soil can be obtained from 

Figures 5.33 and 5.34 respectively. For a given soil, the optimal thickness is when the thickness 

corresponds to the intersection of two curves: the optimal moment curve and the moment curve 

representing the given soil. It is clear that the optimal thickness of either raft or grid increases as 

the soil stiffness decreases. Unless it is essential, an unnecessary increase in the foundation 

thickness is not preferred as it attracts more bending moments and gives more costly design.  

 

For the problem under consideration when Es = 5 [MN/m
2
], Figures 5.33 and 5.34 show that the 

working optimal depths of raft and grid are respectively about 0.85 [m] and 0.95 [m], keeping in 

mind that l = 5.0 [m]. This means about 11 [%] material saving for the raft than that for the grid 

because both foundations have the same contact area. Furthermore, Figures 5.24, 5.25, 5.27, and 

5.28 show that the rigidities of raft and grid are 80 [%] and 63 [%], and the corresponding 

maximum span distortions are about 0.0028 and 0.004, respectively. Therefore, one can say that 

raft present the most appropriate solution for weak soil conditions. 

 

 

 
 

Figure 5.33 Determination of optimal thickness of the raft 
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Figure 5.34 Determination of optimal thickness of the grid 

 

 

5 Recommendations for foundation systems selection 

 

Based on the analysis and results discussed before, Table 5.4 gives some recommendations that 

can put the designer on the economic side and help him to choose an appropriate foundation 

system for certain soil foundation conditions. 

 

Table 5.4 Selection between raft and grid 

 

Case of selection 
Suitable foundation system 

Raft Grid 

Soil has Es ≥ 20 [MN/m
2
] --- x 

Soil has Es  <  20 [MN/m
2
] x --- 

Weak layer at relative deep level (z > 0.8 ts ) --- x 

Consolidated layer under foundation --- x 

Column span exceeds six times foundation thickness x --- 

Column span less than six times foundation thickness x x 
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6 Conclusions 

 

In general, the following conclusions are drawn: 

 

- For the two foundation systems, the bigger the foundation depth, the higher the system

 rigidity and the lower the settlement and angular distortion, especially for weak soil

 conditions 

 

- Any unnecessary increase in the foundation thickness should be avoided because it leads

 to higher bending moments and more costly design 

 

- For weak soil conditions, an optimal raft system seems to be the most appropriate and

 economic solution, because it has higher rigidity for smaller optimal thickness and it

 reduces the differential settlement 

 

- Grid systems cause slightly lower stresses in the soil and their discontinuity at the contact

 surface may lead to better consolidation behavior, which might attract the designer

 interest when he deals with highly compressible soils 

 

- On the same soil type, foundation area and thickness, the rigidity of the raft is more than

 that of the grid by Δkr = 25 [%] 

 

- Angular distortion for the grid is less than that of the raft by 13 [%] to 25 [%] 

 

- For weak soil, the raft saves about 11 [%] material compared with the grid 
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6.1 Introduction 
 

The presence of the structure on compressible subsoil causes settlements for the foundation and 

also for the structure itself. Values of settlements and settlement differences depend not only on 

the thickness of the compressible soil layer under the foundation, the value and distribution of 

structure loads, the foundation depth and contact pressure under the foundations but also on the 

flexural rigidity of the structure. 

 

One of the properties with a considerable influence on the development of settlement is the 

rigidity of the superstructure. The more rigid structure has more uniform settlement and 

conversely, structure that is more flexible has greatest difference in settlement. The entire 

structure can be defined as the three media: superstructure, foundation and soil. The analysis of 

the entire structure as one unit is very important to find the deformations and internal forces. 

However, most of the practical analyses of structures neglect the interaction among the three 

media to avoid the three-dimensional analysis and modeling. The structure is designed on the 

assumption of non displaceable supports while the foundation is designed on the assumption that 

there is no connection between columns. Such accurate analysis of the entire structure is 

extremely complex. 

 

The early studies for consideration the effect of the superstructure were by Meyerhof (1953) who 

suggested an approximate method to evaluate the equivalent stiffness that includes the combined 

effect of the superstructure and the strip beam foundation. Kany (1959) gave the flexural rigidity 

of a multi-storey frame structure by an empirical formulae. Also, Kany (1977) analyzed the 

structure with foundation using a direct method. Demeneghi (1981) used the stiffness method in 

the structural analysis. Panayotounakos/ Spyropoulos/ Prassianakis (1987) presented an exact 

matrix solution for the static analysis of a multi-storey and multi-column rectangular plexus 

frame on an elastic foundation in the most general case of response and loading. 

 

At the analysis of foundations with considering the superstructure stiffness, it is required to 

distinguish between the analysis for plane structures (two-dimensional analysis) and that for 

space structures (three-dimensional analysis). Further, it is required to distinguish between 

approximation methods with closed form equations (Kany (1974), Meyerhof (1953), Sommer 

(1972)) and refined methods such as conventional plane or space frame analysis (Kany (1976)), 

Finite Elements (Meyer (1977), Ellner/ Kany (1976), Zilch (1993), Kany/ El Gendy (2000)) or 

Finite Differences (Bowles (1974), Deninger (1964)). 

 

In addition, many analytical methods are reported for analysis of the entire structure as one unit 

by using the finite element. For examples: 

 

Haddadin (1971) presented an explicit program for the analysis of the raft on Winkler’s 

foundation including the effects of superstructure rigidity.  

 

Lee/ Brown (1972) analyzed a plane frame on a two-dimensional foundation.  

 

Hain/ Lee (1974) employed the finite element method to analyze the flexural behavior of a 

flexible raft foundation taking into account stiffness effect of a framed superstructure. They 

proposed the use of substructure techniques with finite element formulation to model space 

frame raft soil systems. The supporting soil was represented by either of two types of soil 

models (Winkler and half space models).  
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Poulos (1975) formulated the interaction of superstructure and foundation by two sets of 

equations. The first set links the behavior of the structure and foundation in terms of the applied 

structural loads and the unknown foundation reactions. The second set links the behavior of the 

foundation and underlying soil in terms of the unknown foundation reactions.  

 

Mikhaiel (1978) considered the effect of shear walls and floors rigidity on the foundation.  

 

Bobe/ Hertwig/ Seiffert (1981) considered the plastic behavior of the soil with the effect of 

superstructure.  

 

Lopes/ Gusmao (1991) analyzed the symmetrical vertical loading with the effect of the 

superstructure.  

 

Jessberger/ Yuan/ Thaher/ Ming bao (1992) considered the effect of the superstructure in case of 

raft foundation on a group of piles.  

 

Zilch (1993) proposed a method for interaction of superstructure and foundation via iteration. 

 

Kany/ El Gendy (2000) proposed an iterative procedure to consider the effect of superstructure 

rigidity on the foundation. In the procedure, the stiffness of any substructure such as floor slab or 

foundation, connected by the columns can be represented by equivalent spring constants due to 

forces and moments at the connection nodes. Consequently the stiffness matrices of the slab 

floors, columns and foundation remain unaffected during the iteration process. 

 

 

6.2 Simplified modeling of superstructure foundation soil system 

6.2.1 Rigidity of the structure 
 

Sometimes at the analysis of shallow foundations, examining the influence of the structure 

rigidity is imperative. Two rigidities concerning the rigidity of the structure are required to be 

computed. The first rigidity is the flexural rigidity of the structure that is independent of the 

deformation behavior of the subsoil. The second one is the system rigidity that expresses the 

ratio of the flexural rigidity of the structure to the stiffness of the subsoil. 

 

In the analysis scope of shallow foundations, the following questions are required to be 

answered: 

 

- How flexural rigidity and system rigidity in a specific case are computed? 

- At which value of the system rigidity a structure can be described as practically rigid? 

- What is the influence of the flexural rigidity of the structure on the analysis results? 

 

The presence of the superstructure on the foundation causes besides the stiffness of the 

foundation alone further stiffness on the system. This influence is great, when the ratio of the 

flexural rigidity of a structure to that of the foundation is great. 

 

The flexural rigidities of the superstructure and foundation elements and the stiffness of the 

subsoil have been identified by many authors (Brown/ Yu (1986), Lee/ Harrison (1970) and 

Meyerhof (1953)). The absolute stiffness of superstructure KB [kNm
2
], foundation KG [kNm

2
] 

and subsoil Ks [kNm
2
] or Kc [kNm

2
] can be obtained as it is described in the following section. 
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6.2.1.1 Flexural rigidity of the superstructure 
 

The flexural rigidity of the superstructure KB [kNm
2
] is expressed through the product of 

modulus of elasticity EB [kN/m
2
] of the superstructure material and the ideal moment of inertia 

IB [m
4
] of the entire superstructure system 

 

(6.1)      BBB IEK   

 

According to Meyerhof (1953), the flexural rigidity of the multi-storey superstructure composed 

of slabs and columns (or walls) running in the longitudinal direction of the bending axis can be 

obtained approximately as follows (Figure 6.1) 

 

 
 

Figure 6.1 Details of multi-storey frame with foundation (Meyerhof’s formulae) 
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where: 

ns  Total number of storeys 

L  Total length of the superstructure (= ns l)   [m] 

Kr = Ir/l Average stiffness of floor      [m
3
] 

Ir  Moment of inertia of floor     [m
4
] 

l  Length of bay or floor beam     [m] 

Ku = Iu/hu Average stiffness of lower columns    [m
3
] 

Iu  Moment of inertia of lower columns    [m
4
] 

hu  Height of storey under the floor    [m] 

Ko = Io/ho Average stiffness of upper columns    [m
3
] 

Io  Moment of inertia of upper columns    [m
4
] 

ho  Height of storey upper the floor    [m] 

Ii  Average moment of inertia of the storey i    [m
4
] 

 

The total stiffness of the entire superstructure is then given by 

 

(6.3)      
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ii) The superstructure is an open frame with wall cladding 

 

External building frames are generally stiffer than indicated above due to wall cladding. In this 

case the frame consists of solid panels between the beams and columns and only shearing stress 

can be transmitted from the frame to the panels. Therefore, in any storey i the flexural rigidity of 

Equation 6.2 is increased further as 

 

(6.4)     
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where: 

Ef If = Ef tw h
3
/12  Flexural rigidity of the panel (in vertical plane) [kNm

3
] 

If     Moment of inertia of wall    [m
4
] 

Ef    Modulus of elasticity of the wall material  [kN/m
2
] 

tw    Wall thickness      [m] 

h    Wall height      [m] 

 

iii) The superstructure is constructed as a deep beam 

 

If the wall cladding is fully continuous so that the whole frame behaves like a solid deep beam, 

the flexural rigidity of the frame itself can frequently be ignored compared with that of the wall. 

Therefore, the flexural rigidity of the superstructure can be approximately obtained from 

 

(6.5)     
12

  
 

3HtE
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where: 

H Height of wall or superstructure [m] 
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With sufficiently great number of bays nl, the following approximation Equation 6.6 for 

estimating the flexural rigidity of multi-storey open frames without wall cladding can be used 

 

(6.6)     
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where: 

Ks = Is/h Average stiffness of upper and lower columns  [m
3
] 

Is  Average moment of inertia of upper and lower columns [m
4
] 

 

Equation 4.6 is derived from Equation 4.2, 

when Ks ≈ Ku ≈ Ko = constant and nl
2
 2Ks/(Kr +2Ks) » 1 

 

 

6.2.1.2 Flexural rigidity of the foundation 

 

The flexural rigidity KG [kNm
2
] of a foundation of width B [m] and thickness d [m] is given by 

 

(6.7)     
12
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where: 

IG Moment of inertia of foundation   [m
4
] 

EG Modulus of elasticity of the foundation material [kN/m²] 

 

Now, the total flexural rigidity of the entire structure Eb I [kNm
2
] can be defined as the sum of 

the flexural rigidities of the foundation KG [kNm
2
] and the superstructure KB [kNm

2
] 

 

(6.8)     BBGGb IEIEIE     

where: 

I Ideal moment of inertia for the entire structure  [m
4
] 

Eb Average modulus of elasticity for the entire structure [kN/m²] 

 

 

6.2.2  Stiffness of the subsoil 
 

The stiffness of the subsoil for Winkler’s model depends on modulus of subgrade reaction ks 

[kN/m
3
] while for Continuum model depends on modulus of compressibility Es [kN/m

2
]. 

 

For a rectangular foundation of width B [m] and length Lf [m] the stiffness of the subsoil for 

Winkler’s model Kw [kNm
2
] is given by 

 

(6.9)      BLkK fsw   
4

 

 

while for Continuum model Kk [kNm
2
] is given by 

 

(6.10)      BLEK fsk   
3

 
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6.2.3  System rigidities 
 

The decision of whether a structure or foundation has to be considered as rigid, elastic or flexible 

depends on the ratio between the rigidity of the superstructure including the foundation and the 

stiffness of the subsoil. 

 

If one neglects the superstructure, the system rigidity for Winkler’s model Kc [-] is given by 
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while for Continuum model Ks [1] is given by 
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where: 

Kc System rigidity for Winkler’s model    [-] 

Ks System rigidity for Continuum model   [-] 

EB Modulus of elasticity of foundation material   [kN/m²] 

I B d
3
/12 = Moment of inertia of foundation section  [m

4
] 

 

To consider the rigidity of the superstructure in Equations 6.11 and 6.12, the foundation 

thickness d [m] in the Equations is replaced by an ideal foundation thickness di [m]. The ideal 

foundation thickness di [m] is the thickness of a rectangular cross section which has the same 

ideal moment of inertia for the entire structure I [m
4
] and width B [m] according to Equation 6.8. 

 

(6.13)      3
 12

B

I
d i  

 

In addition, to take the effect of the superstructure on the foundation, the analysis of the 

foundation shall be carried out with ideal thickness of the foundation di [m] instead of the 

original foundation thickness d [m]. 

 

According to experiences and based on great number of comparative computations, the values of 

the system rigidity between foundation and subsoil, at which the system can be considered as 

rigid, already exist (Borowicka (1939), Graßhoff (1987) and Kany (1974)). Table 6.1 shows a 

list of different values for the system rigidity according to the German Standard DIN 4018. 
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Table 6.1 Numerical values for different grade of system rigidity 

 

Winkler’s model 

Kbe = 12 Kc [1] 

Continuum model 

KSt = 12 Ks [1] 
Description 

KBe  0.2 KSt  1.0 Rigid 

0.2 > KBe  0.08 1.0 > KSt  0.4 Very stiff 

0.08 > KBe  0.04 0.4 > KSt  0.2 Medium stiff 

0.04 > KBe  0.02 0.2 > KSt  0.1 Stiff 

0.02 > KBe  0.008 0.1 > KSt  0.04 Elastic 

0.008 > KBe  0.004 0.04 > KSt  0.02 Medium elastic 

0.004 > KBe  0.002 0.02 > KSt  0.01 Very elastic 

0.002 > KBe 0.01 > Kst Flexible 

 

 

Besides the practical meaning of the system rigidity for the decision of structure rigidity, it can 

be also used to choose the applicable numerical model for specific case according to the system 

rigidity. In case of rigid foundations (or rigid structures), it is expected simplification results by 

computing the contact pressure and soil settlement. Therefore, a simplified numerical model may 

be used here. For Winkler’s model, the distribution of contact pressure changes to simple 

distribution like that of the simple assumption model. For Continuum model, the contact 

pressure for a regular foundation can be obtained directly by the closed formulae of Boussinesq. 

In addition, the tables of Kany (1974) for obtaining the contact pressure under rigid foundations 

are applicable here. For flexible structures such as a group of footings, the loads on the 

foundations are known (statically determinate structure). Therefore, only the interaction of 

footings through the subsoil due to the overlap stress in soil may be taken into account at the 

analysis. 

 

 

6.2.4 Modeling of wall-floor superstructure in the raft analysis 

 

In most design applications, the only significant additional stiffness is provided by shear walls. 

Here, modeling the wall and its floor connections by beam elements joined to the raft in the plan 

positions of the wall is normally sufficient. According to evaluated measurements of settlements, 

considering only one or two storeys above the raft is usually necessary.  

 

This stiffness can be determined approximately by defining the effective wall dimension. 

Guidelines for calculating effective flange width beff [m] according to Hemsley (1998) are given 

in Figure 6.2. Table 6.2 shows also effective flange widths for inner and edge walls. These 

effective flange widths depend on whether the floor slab is continuous on either sides of the wall 

or only on one side. Flange widths also depend on the wall spacing Bw [m] and span Lw [m]. In 

the analysis, the lowest of the three values of flange width beff [m] in Table 6.2 is used. 
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Figure 6.2 Effective flange widths for beams used to model wall-floor superstructure 

 

 

Table 6.2 Effective flange width of the wall 

 

Wall position Effective flange width beff [m] 

Inner wall beff = tw +12 ts beff = Lw /3 beff = Bw 

Edge wall beff = tw +4 ts beff = Lw /6 beff = Bw /2 

 

 

where in Table 6.2 ts [m] is the floor thickness. 

 

 

6.2.5 Determination of replacement wall height hErs 
 

To simulate the wall stiffness on the finite element mesh by using additional beam elements, the 

actual properties of the beam elements must be determined. The stiffness of the wall can be 

obtained through a replacement beam arranged in the center plane of the plate. The dimensions 

of the replacement beam can be taken as shown in Figure 6.3. This can be carried out by 

determining firstly the moment of inertia of the effective section of the wall Ipb [m
4
] that contains 

two parts, flanges and web. Then, the replacement height of the web hErs [m] can be determined 

by equating the moment of inertia Ipb [m
4
] to two equivalent moments of inertia. The first 

moment of inertia corresponds a rectangular flange Ip [m
4
] while the second corresponds a 

rectangular web Iw [m
4
]. The replacement height of the web hErs [m] must be higher than the sum 

of raft thickness d [m] and clear height of the wall hw [m]. In the finite element model, the wall 

and floor flange are represented by beam element that has the property of tw [m] and hErs [m] 

while the raft flange is already included in the plate finite element. 

 

beff 

d 

ts 

tw 

Inner wall Edge wall 

beff 

d 

ts 

tw 
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Figure 6.3 Determination of replacement height hErs 

 

 

6.3  Direct modeling of superstructure-foundation-soil system 

 

For modeling of the superstructure-foundation-soil system, the stiffness matrix for the entire 

structure must be derived from the summation of the stiffness matrices of superstructure, 

foundation and subsoil model. So, the three media can be treated as an integral unit. This can be 

applied by considering the compatibility of deformations between the superstructure, foundation 

and the soil medium, where the superstructure deformation is equal to the foundation 

deformation and the soil settlement is equal to the foundation deflection. 

 

The equilibrium equation for the entire structure (superstructure foundation subsoil model) is 

written in matrix form as 

 

(6.14)          FUKt   

 

where: 

[Kt] Total stiffness matrix for the entire structure 

{U} Vector of nodal displacements for the entire structure 

{F} Vector of external nodal forces for the entire structure 
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The above system of linear equations can be solved using one of the following methods: 

 

a) Gauss elimination method. This method treats the total system of equations of the entire

 structure as one unit. Therefore, it requires large computer storage and long computation

 time 

 

b) Substructure technique, where the set of nodal displacements {U} is divided into

 boundary displacements common to the superstructure and the supporting soil including

 the foundation displacements {Ub} and interior displacements of the superstructure

 {Ui}. Corresponding to each of these displacement sets is a set of external forces {Fb}

 and {Fi}, respectively. Then, the system of equations can be derived in two partitioned

 sets of equations. The boundary displacements {Ub} can be calculated by solving the

 first set of equations, then the interior displacements of the superstructure {Ui} can be

 obtained by performing back substitution of the internal nodes in which the boundary

 displacements {Ub} are already obtained 

 

c) Iteration method allows less computer storage and short computation time. The iterative 

procedure available in program ELPLA to analyze the entire structure as one unit, 

developed by Kany/ El Gendy (2000), is described in the following section 

 

 

6.4  Modeling of superstructure foundation soil system by iteration 

 

Most of the methods for analysis of the entire structure as one unit were focused on the 

interaction analysis of open framed structures on linear elastic subsoil models. An actual 

modeling for structure may also be used, where the columns, walls, slabs and foundation are 

modeled as a three dimensional problem using plate element and frame element having six 

degrees of freedom at each node comprising 3 translations (u, v, w) and 3 rotations (θx, θy, θz). In 

spite of the success of this method in the analysis of structure, the analysis is time-consuming 

and requires large computer capacity. The use of such analysis leads to a great overall stiffness 

matrix of the structure. However, in many cases, the effects of some translation or rotation 

components may be ignored. For example, a structure carries vertical loading, due to the in-

plane rigidity of the floors and foundation, has rigid body modes of displacements and no in-

plane deformation is expected. That is why the in-plane stress and deformation can be neglected. 

In these cases the size of the stiffness matrix of structure will be considerably reduced, if a 

reasonable analysis is carried out. An example for this problem may be found in the analysis of 

common multi-storey buildings, where the degree of freedom at nodes of adjacent substructures 

is different. 

 

In the raft foundation and floors each node has three degrees of freedom comprising one 

translation (w) and two rotations (θx, θy). In the superstructure components it has two translations 

(u, v) in the shear walls, three translations (u, v, w) and three rotations (θx, θy , θz) in a space 

frame. In the supporting soil it has only one translation w. One of the advantages of the iterative 

procedure of Kany/ El Gendy (2000) is to overcome the incompatibility in the degree of freedom 

at the different adjacent substructures by reflecting only the required translations and rotations 

during the iteration process. Thus, minimization of the calculation effort will take place. 
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The iterative procedure presents an accurate and rapid method for linear and nonlinear analysis 

of foundation supporting multi-storey buildings considering the effect of superstructure rigidity. 

Using this iterative procedure the computational time is significantly reduced compared with the 

traditional analysis of soil-structure problems. 

 

To perform the entire active structure-foundation analysis two computer programs were 

developed, one for the analysis of floor and foundation slabs with or without girders, the second 

program for the analysis of a space frame. The two programs are standard finite element solution 

for plate element and space-beam element types. 

 

 

6.4.1 Iterative procedure 

 

To describe the iterative procedure, an idealized superstructure containing floor slabs and 

columns supported by a raft foundation is considered as a typical example shown in Figure 6.40. 

In the procedure the superstructure is partitioned into floor slabs and columns besides the 

foundation. The nodes are numbered for each substructure separately. To consider the effect of 

superstructure rigidity on the foundation an iterative procedure, Figure 6.4, can be described as 

follows: 
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Figure 6.4 Interaction of superstructure and foundation via iteration 

 

(0) complete structure 

(3) foundation under column reactions 

(2) columns on fixed supports 

(1) floors on fixed supports 

(4) columns on elastic supports {kf} 

(7) foundation under column reaction {V} 

(6) columns exposed to deformation {δf} 

(5) floors on elastic supports {kc} 
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(1) Each floor slab is analyzed separately as if it is rigidly attached to the columns

 (rotation = displacement = 0). Then, the support reactions {R} at the position of the floor

 slabs attached to the columns are obtained 

 

(6.15)        i
T

zyxzyxi RMRMRMRRRR  ,  ,  ,  ,  ,    

 

 where {R}i is the vector of support reactions of the floor slab at node i attached to the

 column; Rx, Ry, Rz, RMx, RMy and RMz are the support forces and moments in x-, y-

 and z-directions at that node 

 

(2) Support reactions {R} from floor slabs are applied to the columns as external loads.

 Analyzing the frame of columns separately under these loads as if it is rigidly attached to

 the foundation (rotation = displacement = 0). Then, the end reactions of columns {V}

 attached to the foundation are obtained 

 

(6.16)        i
T

zyxzyxi VMVMVMVVVV  ,  ,  ,  ,  ,    

 

 where {V}i is the vector of support reactions at the column base attached to the

 foundation at node i; Vx, Vy, Vz, VMx, VMy and VMz are the support forces and

 moments in x-, y- and z-directions at that point 

 

(3) The end reactions at the column bases {V} are applied to the foundation as external

 loads.  The foundation is analyzed to obtain the deformations of the foundations {δf} at

 the column base positions  

 

(6.17)        i
T

zfyfxffffif wvu θ , θ , θ ,  ,  ,  δ  

 

 where {δf}i is the vector of deformations of foundation at node i attached to the column

 base; uf, vf, wf, θxf, θyf and θzf are the displacements and rotations in x-, y- and z-

 directions at that point 

 

(4) The above foundation deformations {δf} are used to obtain the foundation rigidity at the

 column bases. This is done by determining a set of spring constants {kf} to represent the

 foundation stiffness connections 

 

(6.18)    
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 where kuf, kvf, kwf are transitional spring stiffnesses due to forces in x-, y- and z-

 directions. kθxf, kθyf  and kθzf are rotational spring stiffnesses due to moments in x-, y-

 and z-directions 

 

 The analysis is performed on frame of columns separately under the previous loads {R} 

 as if it is resting on elastic supports having the spring constants {kf}. Then, the column 

 deformations {δc} at floor slab positions are obtained 
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(6.19)        i
T

zcycxccccic wvu θ , θ , θ ,  ,  ,  δ  

 

 where {δc}i is the vector of column deformations at floor slab position at node i; uc, vc, 

 wc, θxc, θyc and θzc are the displacements and rotations in x-, y- and z-directions at that 

 point 

 

(5) The previous column deformations {δc} are used to obtain the column rigidity at the 

 floor slab positions. This is done by determining a set of spring constants {ks} to 

 represent the column stiffness connections  

 

(6.20)    
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 where kuc, kvc, kwc are transitional spring stiffnesses due to forces in x-, y- and z-

 directions. kθxc, kθyc  and kθzc are rotational spring stiffnesses due to moments in x-, y- 

 and z-directions 

 

 The analysis is performed on each floor slab separately as if it is resting on elastic 

 supports having the spring constants {kc}. Then, the floor slab deformations {δs} at 

 column positions are obtained 

 

(6.21)        i
T

zsysxssssis wvu θ , θ , θ ,  ,  ,  δ  

 

 where {δs}i is the vector of deformations of floor slab attached to column at node i; us, 

 vs, ws, θxs, θys and θzs are the displacements and rotations in x-, y- and z- directions at 

 that node. Determination of the new support reactions {R} of the floor slabs attached to 

 the columns due to elastic supports 

 

(6.22)   
   

  i
T
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(6) The above foundation deformations {δf} are applied at the column bases. The analysis is 

 performed on the frame of columns separately under the previous loads {R}. Then the 

 end reactions of columns {V} attached to the foundation are obtained 

 

(7) The end reactions at the column bases {V} are applied to the foundation as external 

 loads. The analysis is performed on the foundation to obtain the deformations of the 

 foundations {δf} at the column base positions 

 

The steps (4) to (7) have to be repeated until a sufficient compatibility of deformations between 

floor slabs and columns and between columns and foundation is reached at the connecting 

nodes. 
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6.4.2 Nonlinear mathematical soil model 

 

A mathematical model for raft foundation resting on nonlinear soil medium for Winkler’s model 

was presented by Baz (1987) and Hasnien (1993). This model is selected here for the analysis of 

foundation considering the effect of superstructure rigidity. In the mathematical model, the soil 

medium was represented by springs with nonlinear relation between the contact pressure of an 

individual spring and corresponding settlement. The model represents the nonlinear behavior of 

the contact pressure-settlement at the raft-soil interface by Equation 6.23 analogous to the 

hyperbolic function that represents the stress-strain relationship of the soil 

 

(6.23)      

ult
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where qi [kN/m
3
] is the contact pressure at node i on the foundation, wi is the soil settlement at 

that node, kt [kN/m
3
] is the initial subgrade reaction and qult [kN/m

2
] is the ultimate bearing 

capacity of the soil. 

 

An extension for the above nonlinear soil medium for Winkler’s model is made in the procedure 

to represent the nonlinear behavior of foundation on Continuum model. In this case the initial 

subgrade reaction is variable from one node to the other and is obtained from the linear analysis 

of foundation on Continuum model, Equation 6.24 

 

(6.24)      

li

li
ti

w

q
k  

 

where kti [kN/m
3
] is the initial subgrade reaction at node i, qli [kN/m

2
] and wli [m] are the linear 

contact pressure and soil settlement at that node respectively. 

 

Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be 

introduced in the previous iterative procedure as follows, Figure 6.5: 

 

- At iteration cycle (j) the nonlinear contact pressure qi at node i is  

 

(6.25)      
)()()(
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i wkq  

 

 where ksi is the modulus of subgrade reaction at node i, and equal to the initial subgrade 

 reaction kti at the first iteration cycle 

 

- For the next iteration cycle (j + 1) the modulus of subgrade reaction ksi is modified using 

 Equation 6.23 

(6.26)      
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These steps have to be repeated until a specified tolerance ε between the nonlinear contact 

pressure qi calculated from iteration cycle (j) and that of the previous cycle (j - 1) is reached. 
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Figure 6.5 Contact pressure-settlement diagram, linear and nonlinear analysis 
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Example 6.1 Analysis of a raft for a high rise building 

 

1 Description of the problem 

 

This example was carried out to show the influence of flexure rigidity of the superstructure on 

the settlements and contact pressures for a raft of high rise building. 

 

It is required to analyze a raft for the building shown in Figure 6.6 in three simplified sections. 

The building is a reinforced concrete skeleton structure and consists of a cellar and 13 storeys. 

The floor height is 3 [m] while the bay width is 3.6 [m]. The number of bays is 18. The total 

building length is 66 [m] while the total width of the cellar basement is 17.55 [m]. The raft 

thickness is 1.2 [m]. In the following study the raft is analyzed considering subsoil behavior. 

Also, an estimation of the superstructure deformations is carried out. In the analysis, settlements 

and contact pressures are determined in which a comparison is carried out in four cases as: 

 

i) For not stiffened raft 

ii) For compound system raft-cellar 

iii) For compound system raft-cellar-superstructure 

iv) For completely rigid raft 

 

The stiffness of the structure system parallel to the long axis can be determined from the data 

given in Figures 6.6 and 6.7. 

 

 

2 Soil properties 

 

According to Figure 6.7, the subsoil layers consist of a sandy clay layer until 11.6 [m] depth 

under the ground surface with modulus of compressibility Es = 14 000 [kN/m
2
]. Under the sandy 

clay layer exists in 11.60 [m] depth practically incompressible sandstone rock in great thickness. 

The settlement parts from the reloading of the soil are neglected. The foundation level under the 

original ground surface is 3.80 [m]. The modulus of compressibility method is used to analyze 

the foundation. 

 

 

3 Material properties of concrete 

 

The building material is reinforced concrete and has the following properties: 

 

Young’s modulus  Eb = 2 × 10
7
 [kN/m

2
] 

Poisson’s ratio  νb = 0.25  [-] 

Unit weight   γb = 0.0  [kN/m
3
] 

 

Unit weight of the concrete is chosen γb = 0.0 to neglect the self-weight of the structure. 
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4 Loads 

 

According to static calculation of the open frame assuming rigid supports, each column from the 

twice 17 columns of the external walls has a column load of 2700 [kN] while each column of the 

twice 17 internal columns has a column load of 2500 [kN]. The column load for the four corner 

columns is 1350 [kN] while for the four edge columns is 1250 [kN]. The loads with FE-Net of 

the raft are shown in Figure 6.8. 

 

 
 

Figure 6.6 Details of the building 
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Figure 6.7 Subsoil and dimensions of the raft, floors and columns (cross-section) 
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Figure 6.8 FE-Net of the raft with loads 

 

 

5 Analysis of the structure 

5.1 Analysis for not stiffened raft 

 

At first, the settlements and contact pressures are determined under the assumption that except 

for the stiffness of the raft itself (thickness d = 1.2 [m]) no other rigidity is effective. So, the 

flexure rigidity of the raft KG can be obtained from 
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The raft is flexible according to Table 6.1, (0.01 > Kst). 

 

 

5.2  Analysis for the compound system raft-cellar 

 

From the assumption that the raft, the cellar walls and the cellar thickness represent combined 

flexure rigidity for the cross section, the cellar system with the raft must be connected rigidly 

through satisfied reinforcement. Considering the cross-section shown in Figure 6.7, the height xs 

of the center of gravity of the system cellar-raft is given by 
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Then, the moment of inertia IG of the foundation system according to Steiner’s law is given by 
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The rigidity of the structure KG is given by 

 

][kN/m 1033.1102.45101.2 377  GGG IEK  

 

Then, the ideal raft thickness di is given by 
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The raft is stiff according to Table 6.1, (0.2 > KSt ≥ 0.1). 

 

 

5.3  Analysis for the compound system raft-cellar-superstructure 

 

In this case the structure system is considered as a raft, cellar and superstructure connected 

together as one unit. Here, the statical system of the structure may be taken as multi-storey open 

frame (13 storeys, 18 bays), which is statically indeterminate. The next calculation shows a 

simplificative way to estimate the rigidity of the overall structure on the foundation. In the 

calculation, it is assumed that only the rigidity of the open panels is taken into consideration 

where the contribution of filling walls on the structure rigidity is neglected. 

 

Moment of inertia of the floor Ir 

 

According to Beton-Kalender (1957), page 47 or El Behairy (1992), page 17 the moment of 

inertia can be obtained from 
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Average stiffness of the floor Kr 

 

][m 01053.0
6.3

0379.0 3
l

I
K r

r  

  

Moment of inertia of the columns Is 

 

The columns consist of two internal columns with cross-section of 0.5 × 0.5 [m] and two 

external columns with cross-section of 0.5 × 0.4 [m]. 
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Since all floors and columns are supposed to have similar cross-sections, the effective moment 

of inertia IB of the multi-storey open frame according to Meyerhof (1953) can be given by 
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Flexure rigidity of the superstructure KB 
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Flexure rigidity of the entire structure Kb 
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The raft is very stiff according Table 6.1, (1.0 > KSt ≥ 0.4). 

 

 

5.4 Analysis for completely rigid raft 

 

In this case both the superstructure and foundation are considered as an infinitely rigid structure. 

To determine the settlements and contact pressures in this extreme case, the modulus of 

compressibility method for the rigid raft is used. This method considers the raft is completely 

rigid. Rigid raft means a raft has a thickness of d = ∞ which also lead to a flexure rigidity of KG 

= ∞. 

 

Figures 6.9 and 6.10 show the settlements and contact pressures for the four cases of analyses. 

The settlements and contact pressures are determined with an ideal raft thickness di. 

Furthermore, the results of this example are represented in Table 6.3 in details, so that one can 

recognize the differences well. 

 

 

6 Conclusions 

 

This study shows that the results with and without the influence of the structure rigidity are 

different from one to other. Besides, the numerical example shows a way to how it can 

determine for more complicated structure systems the settlements and contact pressures taking 

into account the influence of the structure rigidity. 

 

Table 6.3 Results of structure rigidity for the four different cases of analyses 

 

Analysis 

Moment 

of inertia 

I 

[m
4
] 

Flexure 

rigidity 

K = Eb I 

[kN/m
3
] 

Ideal raft 

thickness 

di 

[m] 

System 

rigidity 

Kst 

[1] 

Grade of 

System 

rigidity 

Not stiffened 

raft 
2.53 5.31 × 10

7
 1.20 0.009 

Flexible 

0.01 > Kst 

Compound 

system 

raft-cellar 

52.54 110.33 × 10
7
 3.30 0.1875 

Stiff 

0.2 > KSt  0.1 

Compound 

system 

raft-cellar-

superstructure 

130.30 273.62 × 10
7
 4.46 0.463 Very stiff  

1.0 > KSt  0.4 

Completely 

rigid raft 
∞ ∞ ∞ ∞ 

Rigid 

KSt  1.0 
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Figure 6.9 Settlements s [m] in longitudinal direction at the middle of the structure 

 

 

 
 

Figure 6.10 Contact pressures q [kN/m
2
] in longitudinal direction at the middle 

of the structure 
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Example 6.2 Verification of the iterative procedure 

 

1 Description of problem 

 

To verify the iterative procedure and evaluate its accuracy, a five-storey building resting on 

foundation through 36 columns is considered. The building is composed of five bays in both x- 

and y-directions, each bay is 5.0 [m] span. The height of the first storey is 4.0 [m] while the 

height of the other storeys is 3 [m]. The typical floor of the five storeys is chosen to be skew 

paneled beams as shown in Figure 6.11. The dimensions and loads of floor beams are shown in 

Table 6.4. The foundation is a grid type with 0.5 [m] thickness and 2.5 [m] breadth, Figure 6.12. 

The columns are square cross sections, the column models and dimensions for each storey are 

shown in Table 6.5. 

 

The building material is reinforced concrete and has the following properties: 

 

Young’s modulus Eb = 3 × 107 [kN/m
2
] 

Poisson’s ratio      νb = 0.15  [-] 

Shear modulus  Gb = 1.3 × 10
7
 [kN/m

2
] 

 

The soil mass below the foundation is idealized as Winkler’s medium. The modulus of subgrade 

reaction of the soil ks is 40000 [kN/m
3
]. 

 

Table 6.4 Dimensions and loads of floor beams 

 

Beam type 
Dimensions 

Load [kN/m] 
Depth [m] Breadth [m] 

Exterior beam B1 0.50 0.25 15 

Interior beam B2 0.70 0.25 30 

 

 

Table 6.5 Column models and dimensions 

 

Storey 
Column dimensions [m × m] 

Model C1 Model C2 Model C3 

1st & 2nd storey 0.40 × 0.40 0.50 × 0.50 0.60 × 0.60 

3rd & 4th storey 0.30 × 0.30 0.40 × 0.40 0.50 × 0.50 

5th storey 0.25 × 0.25 0.30 × 0.30 0.40 × 0.40 
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Figure 6.11 Typical floor in plan 

 

 
Figure 6.12 Foundation plan with column models 
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Figure 6.13 Statical system of space frame with foundation on elastic springs 
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2  Analysis 

 

For the comparison between the results of building analysis using the proposed iterative 

procedure and that of traditional analysis without iteration, the building is modeled as a space 

frame supported by grid foundation resting on elastic springs. The element type for both the 

superstructure and foundation is a beam element as shown in Figure 6.13. 

 

For the calculation based on the traditional analysis without iteration, the structure is divided 

into 1120 space frame elements yielding 621 nodes. Each node has six degree of freedom. This 

generates 3726 simultaneous equations. For the calculation based on the proposed iterative 

procedure, the structure is divided into three parts; floors, space frame (columns) and foundation. 

The number of elements is 140, 180 and 240, yielding 81, 216 and 216 nodes for floor, space 

frame and foundation, respectively. Because the structure subjects to symmetrical vertical 

loading, the effect of horizontal loads will be ignored. Therefore the horizontal translations (u, 

w) and stresses for the floors and foundation are not considered in the analysis. 

 

For the calculation based on the traditional method, a three-dimensional space frame program is 

used to make the analysis of the structure. The horizontal translations and stresses in this case 

are ignored by assuming very small cross section areas for the floors and foundation elements. 

For the calculation based on the proposed iterative procedure, it is easy to use a two- or three-

dimensional program whenever it is applicable to make the analysis of each part of the structure 

separately. A two-dimensional grid program is used to make the analysis of floors or foundation 

in order to omit the horizontal translations and stresses, and a three-dimensional space program 

is used to make the analysis of columns. 

 

Due to symmetry in shape, dimensions, loading and supporting soil, it is possible to make the 

analysis for only one quarter of the structure. However, the analysis is carried out here for the 

whole structure and the conditions of symmetry are used to check the results. 

 

 

3  Results and discussion 

 

To verify the proposed iterative procedure, the results of deformations at six selected points (a) 

to (f) on the foundation are compared in Table 6.6 with those obtained by the traditional method 

without iteration. 
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Table 6.6 Comparison of deformations at selected points on the foundation obtained  

  by iteration and those obtained by traditional method without iteration 

 

Point 

w [cm] θx [-] θy [-] 

With 

iteration 

Without 

iteration 

With 

iteration 

Without 

iteration 

With 

iteration 

Without 

iteration 

a 0.214 0.213 0.00043 0.00042 -0.00043 -0.00042 

b 0.229 0.229 0.00038 0.00037 0.00009 0.00008 

c 0.219 0.219 0.00036 0.00035 -0.00003 -0.00003 

d 0.308 0.308 -0.00011 -0.00009 0.00011 0.00009 

e 0.291 0.291 -0.00011 -0.00009 -0.00004 -0.00003 

f 0.269 0.270 0.00004 0.00004 -0.00004 -0.00004 

 

 

The maximum difference between the vertical translations of floor slabs and columns and 

between those of columns and foundation at attached nodes is considered as an accuracy number 

 

%][ 100 ε 






 


c

pc

w
w

ww
 

 

where εw is the accuracy number for vertical translation in percentage, wc = vertical translation of 

column and wp is the vertical translation of floor or foundation. 

 

The accuracy number εw is 0.6 [%] for translation after four cycles. It can be concluded from the 

comparison that the results of the proposed iterative procedure are in good agreement with those 

obtained by the traditional method without iteration with accuracy εw = 0.6 [%] for the whole 

structure which yields maximum settlement error 0.47 [%] of the foundation. 

 

The computation time required for the iteration process used in Pentium 100 computer with 64 

MB RAM is 39 minutes, while that, required for solving the system of linear equations by the 

traditional method without iteration is 6.5 hours. The computation time required for solving the 

system of linear equations by the traditional analysis without iteration is 10 times more than 

required for the iteration process using the proposed iterative procedure for this example. 

Another analysis using the iterative procedure for the same example was carried out using a 

plate-beam element program for floors and foundation (see case example 4.2), indicated that the 

processing time was 43 minutes. That means, the long computation time for the traditional 

method is referred to solving the overall matrix of the complete structure in one time, which 

normally, in this case, has large band width. 
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Example 6.3 Analysis of structure on nonlinear soil medium 

 

1 Description of problem 

 

An application of the proposed iterative procedure is carried out to study the behavior of 

foundation resting on nonlinear soil medium with considering influence of the superstructure 

rigidity. 

 

The previous example shown in Figures 6.11 and 6.12 is also chosen here to show the analysis 

of structure on nonlinear soil medium with some modification to be a practical problem. 

 

The floor is chosen to be a slab of 22 [cm] thickness resting on skew paneled beams. The slab 

carries a uniform load of 11.8 [kN/m
2
]. Foundation is considered as a raft foundation with 

openings. The dimensions of paneled beams, columns and foundation are the same as those of 

the previous example. 

 

 

2 Soil properties 

 

Two different types of soil models are considered in this case-study: 

 

- Winkler’s model that represents the subsoil by isolated springs 

- Layered model that considers the subsoil continuum medium 

 

The foundation is resting on a soil layer of 10 [m], overlying a rigid base. The soil types are 

represented by the modulus of elasticity Es, for layered model that yields modulus of subgrade 

reaction ks, for Winkler’s model. Table 6.7 shows two different soil types examined in this study 

according to the soil properties Es and ks. The two soil types are selected to represent weak and 

stiff soil. Poisson’s ratio is taken νs = 0.3 for the two soil types. 

 

Table 6.7 Soil properties for two different soil types 

 

Type of soil ks [kN/m
3
] Es [kN/m

2
] qult [kN/m

2
] 

Weak soil 4000 18000 200 

Stiff soil 40000 180000 400 

 

 

3  Analysis 

 

To show the difference between the results of linear and nonlinear analyses with and without 

interaction of superstructure for the two cases of soil models, the foundation is analyzed for both 

the two soil types four times as follows: 

  

a) As a plate resting on linear soil medium without the effect of superstructure rigidity 

b) As a plate resting on nonlinear soil medium without the effect of superstructure rigidity 

c) As a plate resting on linear soil medium with the effect of superstructure rigidity 

d) As a plate resting on nonlinear soil medium with the effect of superstructure rigidity 



Theory for the calculation of shallow foundations 

Chapter 6           Effect of Superstructure Rigidity on Foundation  
 

 6 - 32 

The raft foundation is divided into 504 square elements. Each element has the dimension of 1.25 

[m] × 1.25 [m]. The typical floor is divided into 100 square plate elements. Each has dimensions 

of 1.0 [m] × 1.0 [m] to represent the floor slab. The plate elements are connected with 140 beam 

elements to represent the skew paneled beams. 

 

For analyzing the foundation without interaction of the superstructure, the loads are obtained 

from floor reactions when analyzed as rested on fixed supports, Table 6.8. 

 

Table 6.8 Loads on foundation without interaction of superstructure 

 

Point a b c d e f 

Load [kN] 480 1085 975 3000 2630 2270 

 

 

The initial subgrade reactions kti for the continuum model are obtained from the linear analysis 

of foundation on Continuum model using Equation 6.24. For Winkler’s model, the initial 

subgrade reaction kt is the same as that of the modulus of subgrade reaction ks. 

 

Because of the symmetry of structure in shape, load geometry and supporting soil about x- and 

y-axis, only one quarter of the structure is considered in the analysis.  

 

 

4 Results and discussion 

 

Figures 6.14 to 6.25 show the distribution of settlement, contact pressure and moment at section 

I for 16 cases of analysis. In general, it can be noticed from those figures for both models and 

types of soil that: 

 

- The settlement values from nonlinear analysis with or without interaction of 

 superstructure are greater than those obtained from linear analysis at any node on the raft 

 

- The nonlinear analysis redistributes the contact pressure by decreasing its values under 

 the columns and increasing the values at fields between columns. This makes the contact 

 pressure approaches to the average pressure on the raft, especially for weak soil 

 

- According to the redistribution of the contact pressure on the raft due to nonlinear 

 analysis, the column moment is increased, while the field moment is decreased 

 

- The maximum settlement, contact pressure and moment from the analysis with 

 interaction of superstructure are less than those from the analysis without interaction 

 



Theory for the calculation of shallow foundations 

Chapter 6           Effect of Superstructure Rigidity on Foundation  
 

 6 - 33 

 
Figure 6.14 Settlement s [cm] at section I (Winkler’s model - weak soil) 

 

 
Figure 6.15 Contact pressure q [kN/m

2
] at section I (Winkler’s model - weak soil) 

 

 
 

Figure 6.16 Moment mx [kN.m/m] at section I (Winkler’s model - weak soil) 
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Figure 6.18 Contact pressure q [kN/m
2
] at section I (Winkler’s model - stiff soil) 
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Figure 6.17 Settlement s [cm] at section I (Winkler’s model - stiff soil) 
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Figure 6.19 Moment mx [kN.m/m] at section I (Winkler’s model - stiff soil) 
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Figure 6.22 Moment mx [kN.m/m] at section I (layered model - weak soil) 
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Figure 6.21 Contact pressure q [kN/m
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] at section I (layered model - weak soil) 
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Figure 6.20 Settlement s [cm] at section I (layered model - weak soil) 
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Figure 6.25  Moment mx [kN.m/m] at section I (layered model - stiff soil) 
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] at section I (layered model - stiff soil) 
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The following Tables 6.9 to 6.12 show the maximum settlement, contact pressure under the 

columns, column moments and its differences Δ. 

 

Table 6.9 Comparison of the maximum settlements max.s 

 

Foundation- 

structure- 

interaction 

Analysis of 

settlements 
Settlements 

weak soil 

Es = 18000 [kN/m
2
] 

stiff soil 

Es = 180000 [kN/m
2
] 

Winkler’s 

model 

Continuum 

model 

Winkler’s 

model 

Continuum 

model 

without 

interaction 

linear sln [cm] 3.27 3.51 0.45 0.44 

nonlinear snl [cm] 7.85 8.81 0.62 0.64 

Δ = 100 × (snl - sln) / sln [%] 140 151 38 46 

with 

interaction 

linear sln [cm] 3.15 3.50 0.41 0.42 

nonlinear snl [cm] 6.94 7.93 0.54 0.58 

Δ = 100 × (snl - sln) / sln [%] 120 126 32 38 

 

 

Table 6.10 Comparison of the soil pressure q under the column 

 

Foundation- 

structure- 

interaction 

Analysis of 

settlements 
Soil pressure 

weak soil 

Es = 18000 [kN/m
2
] 

stiff soil 

Es = 180000 [kN/m
2
] 

Winkler’s 

model 

Continuum 

model 

Winkler’s 

model 

Continuum 

model 

without 

interaction 

linear qln [kN/m
2
] 131 126 182 310 

nonlinear qnl [kN/m
2 
] 122 122 152 212 

Δ = 100×(qnl - qln) / qln [%] -7 -3 -17 -32 

with 

interaction 

Linear qln [kN/m
2
] 126 119 163 276 

 
nonlinear qnl [kN/m

2
] 115 114 139 196 

Δ = 100×(qnl - qln) / qln [%] -9 -4 -15 -29 
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Table 6.11 Comparison of the column moment mx 

 

Foundation- 

structure- 

interaction 

Analysis of 

settlements 

Column- 

moments 

weak soil 

Es = 18000 [kN/m
2
] 

stiff soil 

Es = 180000 [kN/m
2
] 

Winkler’s 

model 

Continuum 

model 

Winkler’s 

model 

Continuum 

model 

without 

interaction 

linear mln [kN.m/m] 725 742 609 557 

nonlinear mnl [kN.m/m] 812 836 638 613 

Δ = 100*(mnl - mln)/ mln [%] 12 13 5 10 

with 

interaction 

linear mln [kN.m/m] 554 558 528 490 

nonlinear mnl [kN.m/m] 587 596 538 517 

Δ = 100*(mnl - mln)/ mln [%] 6 7 2 6 

 

 

Table 6.12 Comparison of the field moment mx 

 

Foundation- 

structure- 

interaction 

Analysis of 

settlements 

Field- 

moments 

weak soil 

Es = 18000 [kN/m
2
] 

stiff soil 

Es = 180000 [kN/m
2
] 

Winkler’s 

model 

Continuum 

model 

Winkler’s 

model 

Continuum 

model 

without 

interaction 

linear mln [kN.m/m] -184 -161 -162 -136 

nonlinear mnl [kN.m/m] 3.84 62 -178 -157 

Δ = 100×(mnl - mln)/ mln [%] 102 139 10 15 

with 

interaction 

linear mln [kN.m/m] -125 -104 -153 -128 

nonlinear mnl [kN.m/m] 22 74 -159 -138 

Δ = 100×(mnl - mln)/ mln [%] 118 171 4 9 

 

 

Besides the above notes, the following results are reported (results are written without brackets 

for Winkler’s model, while in brackets ( ) for Continuum model): 
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Settlement (Table 6.9) 

 

The maximum nonlinear settlement for weak soil exceeds maximum linear settlement by 140 

[%] (151 [%]) and 120 [%] (126 [%]) for the analysis with and without interaction of 

superstructure, respectively, while for stiff soil by 38 [%] (46 [%]) and 32 [%] (38 [%]). 

 

For both weak and stiff soil, the ratio between the maximum settlement from the analysis with 

interaction and that without interaction of superstructure is about 0.94 (0.97) for linear analysis, 

while this ratio decreases to 0.90 (0.90) for nonlinear analysis. 

 

 

Contact pressure (Table 6.10) 

 

The linear contact pressure for weak soil exceeds nonlinear contact pressure under the column 

by 8 [%] (4 [%]) for both analyses with and without interaction of superstructure, while for stiff 

soil by 16 [%] (31 [%]). 

 

It is obvious that the contact pressure distribution patterns for Winkler’s model and Continuum 

model are not the same. The contact pressure under the columns for Continuum model are more 

than those of Winkler’s model by ratio of 1.7 for stiff soil. On the contrary to the case of stiff 

soil, this ratio is reduced to 0.95 for weak soil. 

 

 

Moments (Tables 6.11 and 6.12) 

 

For stiff soil, using either linear or nonlinear analysis the values of column moments are nearly 

the same. The difference between nonlinear and linear column moments does not exceed 5 [%] 

(10 [%]) and 2 [%] (6 [%]) for the analysis with and without interaction of superstructure 

respectively.  This difference is slightly increased for field moments to 10 [%] (15 [%]) and 4 

[%] (9 [%]). 

 

For weak soil, there is also no significant change between linear and nonlinear column moments. 

But for field moments the difference between nonlinear and linear is 102 [%] (139 [%]) and 118 

[%] (171 [%]) for the analysis with and without interaction of superstructure respectively. The 

results at section I also show that the field moment has changed from negative to positive at 

fields between columns due to the nonlinear analysis of the foundation. 
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7.1 Nonlinear analysis of foundations for simple assumption model 

7.1.1 Introduction 

 

The simplest model for determination of the contact pressure under the foundation assumes a planar 

distribution of contact pressure on the bottom of the foundation (statically determined). In which the 

resultant of soil reactions coincides with the resultant of applied loads. If all contact pressures are 

compressive, the foundation system will be considered as linear and the contact pressure in this case 

is given directly by the following well-known formula 

 

(7.1)    i

xyyx

xyyyx

i

xyyx

xyxxy

f

i y
III

IMIM
x

III

IMIM

A

N
q  
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





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where: 

N Sum of vertical applied loads on the foundation  [kN] 

qi  Contact pressure at node i      [kN/m
2
] 

xi   Coordinate of node i from the centroidal axis x  [m]  

yi   Coordinate of node i from the centroidal axis y  [m] 

Af  Foundation area      [m
2
] 

Mx Moment due to N about the x-axis    [kN.m] 

My Moment due to N about the y-axis    [kN.m] 

Ix   Moment of inertia of the foundation area about the x-axis [m
4
] 

Iy  Moment of inertia of the foundation area about the y-axis [m
4
] 

Ixy  Product of inertia      [m
4
]  

 

If the foundation subjects to big eccentricity, there will be negative contact pressures on some nodes 

on the foundation. Since the soil cannot resist negative stress, the foundation system becomes 

nonlinear and a resolution must be carried out to find the nonlinear contact pressures. The nonlinear 

analysis of foundation for the simple assumption model has been treated by many authors since a 

long time, where several analytical and graphical methods were available for the solution of this 

problem. 

 

Pohl (1918) presented a table to determine the maximum corner pressure max qo for arbitrary 

positions of the resultant N.  Hülsdünker (1964) developed a diagram using the numerical values of 

this table from Pohl (1918) to determine the maximum corner pressure max qo. For one corner 

detached footing, the closed form formulae cannot be used. Therefore, Pohl (1918) and Mohr (1918) 

proposed a method to estimate the neutral axis through the trial and error method. Besides tables and 

diagrams, Graßhoff (1978) introduced also influence line charts can be used to determine the contact 

pressure ordinates. 

 

Peck/ Hanson/ Thornburn (1974) indicated a trial and error method to obtain the neutral axis 

position for rectangular footing subjected to moments about both axes. Jarquio/ Jarquio (1983) 

proposed a direct method of proportioning a rectangular footing area subjected to biaxial bending. 

Irles/ Irles (1994) presented an analytical solution for rectangular footings with biaxial bending, 

which will lead to obtain explicit solutions for the corner pressures and neutral axis location. 
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The determination of the actual contact area and the maximum corner pressure max qo under 

eccentric loaded foundation with irregular shape is very important. For T-shape foundation loaded 

eccentrically in the symmetry axis, Kirschbaum (1970) derived formulae to determine the maximum 

corner pressure max qo. For some foundation areas with polygonal boundaries, Dimitrov (1977) gave 

formulae to determine the foundation kern and corner pressure max qo. For the same purpose, Miklos 

(1964) developed diagrams. For general cases of foundation, Opladen (1958) presented graphical 

procedure. 

 

Most of the analytical methods used to determine the contact area and corner pressures for eccentric 

loaded foundations are focused on regular foundations where irregular foundations can be analyzed 

only by graphical procedures. In this paper, an iteration procedure is presented to deal with nonlinear 

analysis of foundations for simple assumption model. The procedure can be applied for any arbitrary 

foundation shape and is suitable for computer programs as described in the following section. 

 

 

7.1.2 Description of the procedure 

 

In the procedure, the foundation is divided into rectangular finite elements. It is assumed that the 

contact pressure qi can be replaced by equivalent force Qi at the various nodal points. Consider the 

foundation shown in Figure 7.1 subjected to a big eccentricity. Then, the vector of contact pressures 

{Q}
o
 obtained from the first analysis will contain some nodes with negative contact pressures. This 

vector can be rewritten in a form of separation vectors as 

 

(7.2)             o

n

o

p

o
QQQ  

where: 

{Qp}
(o)

  Vector of positive contact pressures from the first analysis 

{Qn}
(o)

  Vector of negative contact pressures from the first analysis 

 

Now, instead of negative soil reactions {Qn}
(o)

 on the separation zone, equivalent reactions {ΔQ}
(o)

 

over all foundation are to be found. This is achieved out in such a way that the resultant of soil 

reactions should equal and on the same line of action of the resultant of external loads. The iteration 

process to eliminate negative soil pressures for simple assumption model can be described in the 

following steps: 

 

i  A new set of loads on the foundation are assumed where the vector {Qn}
(o)

  

 represents these external applied loads at the same nodes 

 

ii   Then, the vector {ΔQ}
(o)

 can be determined as the new soil reactions due to these  

 applied loads using Equation 7.1 

 

iii  The vector {ΔQ}
(o)

 is added to the vector of positive contact pressures {Qp}
(o)

  

 to obtain the vector of redistributed contact pressures {Q}
(1)

 as 

 

(7.3)             oo

p QQQ 
1

 

 

If new negative contact pressures appear, the above steps are repeated again until negative contact 

pressures no longer appear. Figure 7.1 shows the iteration cycle of the iteration process. 
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Figure 7.1 Iteration cycle of the iteration process 
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7.2  Nonlinear analysis of foundations for Winkler's and Continuum models 

7.2.1 Introduction 

 

If the foundation carries heavy loads, there will be contact pressures on some nodes on the 

foundation much higher than the ultimate bearing capacity of the soil qult. Since the soil cannot resist 

such high pressure, the foundation system becomes nonlinear and a resolution must be carried out to 

find the nonlinear contact pressures. The nonlinear analysis of this problem for Continuum model 

was recorded by many authors, for example Biedermann (1981) and Stark/ Majer (1988). These 

methods based on specifying the maximum permissible contact pressure q
*
 in an iterative process 

during the analysis. The value of q
*
 is usually expressed as a proportion of the average applied 

pressure qo on the foundation, typically 2qo ≤ q
*
 ≤ 3 qo in practical applications. The first step in the 

analysis is to define the nodes that remain "elastic" and that become "plastic". Because the contact 

pressures of plastic nodes exceed the specified limit q
*
, all the contact pressures in these nodes are 

reduced to q
*
. Then, the foundation is analyzed again to obtain the modified contact pressures on the 

elastic nodes. If the new results show that the specified maximum contact pressure is exceeded at 

further nodes, then the entire procedure is repeated until convergence is reached. 

 

A more realistic mathematical model for raft resting on nonlinear soil medium for Winkler’s model 

was presented by Baz (1987) and Hasnien (1993). In the mathematical model, the soil medium was 

represented by springs with nonlinear relation between the contact pressure of an individual spring 

and corresponding settlement. The model represents the nonlinear behavior of the contact pressure 

settlement at the raft soil interface by equation analogous to the hyperbolic function that represents 

the stress strain relationship of the soil. 

 

Kany/ El Gendy (2000) developed this model for the analysis of foundation taking the effect of 

superstructure rigidity into account. Here, an extension for the nonlinear soil medium for Winkler’s 

model is made to represent the nonlinear behavior of elastic foundation on Continuum medium. In 

this case, the initial subgrade reaction is variable from one node to other and is obtained from the 

linear analysis of elastic foundation on Continuum medium. 

 

In this study, a further extension for the above nonlinear soil medium for elastic foundation on 

Continuum medium is made to represent the nonlinear behavior of rigid foundation on Continuum 

medium. Also, an efficient method is presented to eliminate the negative contact pressures for elastic 

and rigid foundations on Continuum medium. 

 

 

7.2.2 Description of the procedure 

 

Elastoplastic analysis 

 

The nonlinear analysis (Elastoplastic) for both Winkler’s and Continuum models based on a 

hyperbolic relation between contact pressures qi and settlements si, which is given by 

 

(7.4)      

ult

i

t

i
i

q
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k
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where: 

qi Contact pressure at node   [kN/m
2
] 

si  Soil settlement at node i   [cm] 

kt  Initial subgrade reaction   [kN/m
3
] 

qult  Ultimate bearing capacity of the soil  [kN/m
2
] 

 

The unknown parameters in Equation 7.4 are contact pressures qi and settlements si. The initial 

subgrade reaction kt for Winkler’s model is given for the problem and may be obtained directly from 

the elastic parameter of the soil. For either elastic or rigid foundation on Continuum medium, the 

initial subgrade reaction kt is variable over all nodes and is obtained from the linear analysis of the 

problem as 

(7.5)      

li

li

ti
s

q
k  

where: 

kti  Initial subgrade reaction at node i    [kN/m
3
] 

sli   Soil settlement at node i from linear analysis  [m] 

qli   Contact pressure at node i from linear analysis [kN/m
2
] 

 

The ultimate bearing capacity of the soil qult in Equation 7.4 can be determined from Equation 7.6 

according to DIN 4017 (1979) 

 

(7.6)    bbddfccult NBNtNcq ν   γν   γν  21  

 

where: 

tf    Level of foundation under the ground surface  [m] 

   Angle of internal friction of the soil    [°] 

c   Cohesion of the soil      [kN/m
2
] 

γ1  Unit weight of the soil above the foundation level  [kN/m
3
] 

γ2   Unit weight of the soil under the foundation level  [kN/m
3
] 

B   Foundation width       [m] 

A   Foundation length      [m] 

Nc, Nd, Nb  Bearing capacity factors    [-] 

Nd = e
π  tan 

 tan
2
 (45 +  / 2) 

Nc = (Nd - 1) cot  

Nb = ( Nd - 1) tan  

νc, νd, νb Foundation shape factors    [-] 

νd = 1 + (B / A) sin  

νb = 1 - 0.3 (B / A) 

νc = (νd Nd - 1) / (Nd - 1) 
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For multi-soil system of n layers under the foundation level (Figure 7.2), the mean values of the soil 

constants φm, cm and γm are determined by weighing the soil constant of the layer thickness hi from n 

layers, in which the mean average values are given by 

 

(7.7)    
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Here, a depth of the slide shape max Ts under the foundation dependent on φm is considered. 

Therefore, an iteration process is necessary. The iteration is repeated until the difference between the 

angle of internal friction which is determined from the iteration cycle i and that of the pervious cycle 

i - 1 is less than 0.1 [°]. According to DIN 4017 (1979), the mean values of the soil constants are 

only accepted, if the internal friction for each individual layer φi does not exceed the average value 

of the internal friction φav by 5 [°]. 

 

 

 
 

 

Figure 7.2 Ultimate bearing capacity for multi-layers system 

 

 

For subsoil defined by number of boring logs, an interpolation among the ultimate bearing capacities 

of the boring logs may be carried out to take into account the irregularity of the soil in x- and y-

directions. 

 

 

 

 

 

 

 

 

 

 

 

Ground surface 

γ1,φ1,c1 

γ3,φ3,c3 

γ2,φ2,c2 

Layer (1) 

Layer (2) 
max Ts 

h1 

tf 

h3 

h2 

Layer (3) 



Theory for the calculation of shallow foundations 

Chapter 7             Nonlinear Analysis of Foundations 

 

 7 - 8 

Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be carried out 

as follows (Figure 7.3): 

 

- At an iteration cycle (j) the nonlinear contact pressure qi at node i is 

 

(7.8)      
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j
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 where ksi is the modulus of subgrade reaction at node i, and equal to the initial subgrade 

 reaction kti at the first iteration cycle 1 

 

- For the next iteration cycle (j + 1) the modulus of subgrade reaction ksi is modified using 

 Equation 7.9 
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These steps have to be repeated until a specified tolerance ε between the nonlinear contact pressure 

qi calculated from an iteration cycle (j) and that of the previous cycle (j - 1) is reached. 

 

 
 

Figure 7.3 Nonlinear analysis procedure 
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Foundation separation analysis 

 

In many cases for both elastic and elastoplastic analyses the results of foundation on either Winkler’s 

medium or Continuum medium include negative contact pressures. In practice, this means a 

separation between the foundation and the soil occurs. Therefore, it becomes necessary to continue 

the analysis to ensure that separation is allowed to occur, and that no contact pressures are at the 

separation zone. 

For Winkler’s model, it is easy to eliminate the negative contact pressures by deleting the 

corresponding modulus of subgrade reaction ks at nodes that have negative pressures. Then, the 

analysis is repeated until negative contact pressures no longer appear. 

 

For elastic foundation on Continuum medium, Cheung/ Nag (1968) introduced an iterative 

procedure to eliminate the appropriate rows and columns in the flexibility matrix [c] and the solution 

is repeated using the modified stiffness matrix [ks] until all contact pressures are compressive or 

zero. Thus the problem remains elastic but becomes nonlinear, as the compressive contact pressures 

are unknown. El Gendy (1994) applied the same procedure of Cheung/ Nag (1968) to rigid rafts on 

Continuum medium. 

 

In this study, an efficient alternative method to eliminate the negative contact pressures is presented. 

The treatment of raft separation for either elastic or rigid raft on Continuum medium is similar to 

elastoplastic analysis. From the first analysis of the raft, the stiffness of the soil may be represented 

by individual springs of variable stiffness ksi through the known contact pressures and corresponding 

settlements. Then, it is easy to eliminate the negative contact pressures by deleting the soil stiffness 

ksi at the separated nodes. Then, the analysis of the raft on individual springs is repeated until 

negative contact pressures no longer appear. 

 

As described before, in the nonlinear analysis (Elastoplastic and raft separation) for either elastic or 

rigid raft on Continuum medium, the subsoil on the nodes of the finite elements is represented by 

individual springs. Therefore, the system of linear equations in each iteration cycle is solved more 

efficiently as the soil stiffness matrix is a diagonal matrix, which in its original form is a full matrix. 

The solution is iterative, but convergence is usually rapid. 
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Example 7.1 Verification of nonlinear analysis for Winkler’s model 

 

1 Description of the problem 

 

To verify the nonlinear analysis of the program ELPLA for Winkler’s soil model, the results of a 

square footing resting on elastic springs obtained through nonlinear analysis by Hasnien (1993) are 

compared with those obtained by the program ELPLA. 

 

A flexible square footing of 0.12 [m] thickness with dimensions of 2 [m] × 2 [m] is considered as 

shown in Figure 7.4. 

 

 
 

Figure 7.4 Footing geometry and loading 
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2 Soil properties 

 

The soil under the footing has modulus of subgrade reaction kst = 30000 [kN/m
3
] and ultimate 

bearing capacity qult = 600 [kN/m
2
]. 

 

 

3 Footing material 

 

The footing material has the following parameters: 

 

Young’s modulus Eb = 1.4 × 10
7
  [kN/m

2
] 

Poisson’s ratio  b = 0.15  [-] 

Unit weight   γb = 25  [kN/m
3
] 

 

 

4 Analysis 

 

Two cases of loading are studied: 

 

a) The footing carries a concentrated load of 1000 [kN] 

b) The footing carries a uniform load of 250  [kN/m
2
] 

 

To study the soil settlements outside the footing borders due to nonlinear analysis, imaginary 

surrounding elements of thickness 0.001 [m] are assumed to be around the footing.  The footing and 

surrounding elements are subdivided into 144 square elements and each element has dimensions of 

0.25 [m] × 0.25 [m]. 

 

 

5 Comparison 

 

Tables 7.1 and 7.2 compare the results of settlements s, contact pressures q and moments mx at the 

center of the footing obtained by Hasnien (1993) with those obtained by ELPLA. From these tables it 

can be seen that the results of both analyses are in good agreement. 
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Table 7.1 Comparison of the results at the center of the footing obtained by Hasnien (1993) 

  and ELPLA (The footing carries a concentrated load of 1000 [kN]) 

 

Item Type of analysis Hasnien (1993) ELPLA 

Settlement 

s [cm] 

Linear analysis 1.78 1.85 

Nonlinear analysis 2.55 2.58 

Contact pressure 

q [kN/m
2
] 

Linear analysis 535 556 

Nonlinear analysis 337 338 

Moment 

mx [kN.m/m] 

Linear analysis 213 272 

Nonlinear analysis 229 293 

 

 

Table 7.2 Comparison of the results at the center of the footing obtained by Hasnien (1993) 

  and ELPLA (The footing carries a uniform load of 250 [kN/m
2
]) 

 

Item Type of analysis Hasnien (1993) ELPLA 

Settlement 

s [cm] 

Linear analysis 0.78 0.81 

Nonlinear analysis 1.18 1.18 

Contact pressure 

q [kN/m
2
] 

Linear analysis 232 242 

Nonlinear analysis 222 223 

Moment 

mx [kN.m/m] 

Linear analysis 12 9 

Nonlinear analysis 13 12 
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Example 7.2 Rectangular foundation subjected to eccentric loading 

 

1 Description of the problem 

 

For comparison with complex foundation shape, no analytical solution is yet available. Therefore, 

for judgment on the nonlinear analysis of foundations for simple assumption model, consider the 

rectangular foundation shown in Figure 7.5. The foundation has the length L = 8.0 [m] and the width 

B = 6.0 [m]. The foundation carries an eccentric load of N = 2000 [kN]. Both of the x-axis and y-axis 

are main axes, which intersect in the center of gravity s of the foundation area. The position of 

resultant N is defined by the ordinates x = ex and y = ey. Within the rectangle foundation area five 

zones are represented. It is found that the contact area and maximum corner pressure max qo depends 

on the position of the resultant N in these five zones (Irles/ Irles (1994)). In this example, the 

maximum corner pressure max qo is obtained using the program ELPLA for each zone and compared 

with other analytical salutations, which are available for rectangular foundation. 

 

 
 

Figure 7.5 Division of the rectangular foundation in five zones 

  according to the position of the resultant N 
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2 Hand calculation of the maximum corner pressure max qo 

 

The maximum corner pressure max qo for the zone (1) can be obtained directly using Equation 7.1, 

where in this case the Resultant N lies in the foundation kern and no separation will occur. The 

maximum corner pressure max qo for the other four zones can be obtained using available analytical 

solutions according to Irles/ Irles (1994), Teng (1962) and Graßhoff/ Kany (1997) as follows: 

 

Zone (2) 

Three corners detached (ex = 3.0 [m], ey = 2.25 [m]) 

 

The maximum corner pressure max qo for zone (2), Figure 7.6a, can be given according to Irles/ Irles 

(1994) from the following equation 
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Zone (3) 

Two corners detached (ex = 3.0 [m], ey = 0.0 [m]) 

 

The maximum corner pressure max qo for zone (3), Figure 7.6b, can be given according to Teng 

(1962) from the following equation 
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Zone (4) 

Two corners detached (ex = 1.0 [m], ey = 2.25 [m]) 

 

The maximum corner pressure max qo for zone (4), Figure 7.6c, can be given according to Graßhoff/ 

Kany (1997) from the following equation 
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Zone (5) 

Only one corner detached (ex = 1.0 [m], ey = 0.75 [m]) 

 

The maximum corner pressure max qo for zone (5), Figure 7.6d, can be given according to Graßhoff/ 

Kany (1997) from the following equation 
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Figure 7.6 Resultant N lies in the four zones (2) to (5) 
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3 Determination of the maximum corner pressure max qo by the program ELPLA 

 

To achieve the comparison between the maximum corner pressure max qo obtained from the 

program ELPLA and that obtained from the other available analytical solutions described above, the 

rectangular foundation is subdivided into refine mesh of square finite elements. Each element has a 

side of 0.1 [m]. The results obtained from the program ELPLA are compared with those obtained 

above in Table 7.3. It shows that the results of both the analytical and iteration methods are in a good 

agreement. 

 

Table 7.3 Comparison between the maximum corner pressure max qo [kN/m
2
] obtained

  from program ELPLA and that obtained from the available analytical solutions 

 

Zone No. Zone (2) Zone (3) Zone (4) Zone (5) 

Available 

solutions 

Irles/ Irles (1994) Teng (1962) Graßhoff/ Kany (1997) 

1000 222 324 107 

ELPLA 1017 223 325 106 

Difference [%] 1.67 0.45 0.31 0.94 
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Example 7.3 Circular foundation subjected to eccentric loading 

 

1 Description of the problem 

 

Another example is considered to show the applicability of nonlinear analysis of foundations using 

the program ELPLA for simple assumption model to different foundation types. The results of 

nonlinear analysis for a circular raft calculated by Teng (1962) are compared with those obtained by 

the program ELPLA. 

 

A circular raft of radius r = 5 [m] is considered as shown in Figure 7.7. The raft carries an eccentric 

load of N = 2000 [kN]. The position of the resultant N is defined by the ordinate e.  

 

 
 

Figure 7.7 Plan of the circular raft with dimensions and FE-Net 

 

 

2 Analysis 

2.1 Simple assumption model 

 

To carry out the comparison, the raft is subdivided into 1238 square elements. Each element has a 

side of 0.25 [m]. The contact pressures q under the middle of the raft are obtained in Figure 7.8 at 

different ratios e/r, which shows also the separation zones. The ratio e/r ranges from 0.25 to 0.75.  

N = 2000 [kN] 

e 

r = 5 [m] 
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Figure 7.8 Contact pressures q [kN/m
2
] under the circular raft at different values of e/r  

 

 

The coefficient k = max qo π r
2
/N at different ratios e/r obtained from the program ELPLA is plotted 

and compared with the results obtained by Teng (1962) in Figure 7.9. It can be concluded from this 

figure that the results of nonlinear analysis of the circular raft using the program ELPLA and those of 

Teng (1962) are in a good agreement. 

 

 
 

Figure 7.9 Coefficient k = max qo π r
2
/N at different ratios e/r 
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2.2 Rigid raft on Continuum medium 

 

Although it is easy to drive closed form equations for raft separation in case of regular rafts for 

simple assumption model, but it is difficult to drive such equations for circular rigid rafts. For this 

reason, the same circular raft is analyzed again for rigid raft on Continuum medium to show the 

applicability of the nonlinear analysis of foundations using the program ELPLA for different soil 

models. The subsoil under the raft is chosen to be a layer of sand, which has the following 

parameters: 

 

Modulus of compressibility Es = 12 000 [kN/m
2
] 

Poisson’s ratio   s  = 0.25 [-] 

Layer depth   z    = 10  [m] 

 

The core of the circular raft, in which no separation occurs when the resultant N lies in it, takes a 

radius r/4 in case of simple assumption model, while in case of rigid raft on Continuum medium 

takes a radius r/3. Therefore, the rigid raft is analyzed for different ratios e/r from 0.35 to 0.75. 

Figure 7.10 shows the contact pressures q under the raft at different values of e/r, while Figure 7.11 

shows the settlements s. 

 
 

Figure 7.10 Contact pressures q [kN/m
2
] under rigid circular raft at different values of e/r 

 

 

A comparison between Figure 7.8 and Figure 7.10 shows that the effective contact area for the raft in 

case of simple assumption model is less than that of rigid raft on Continuum medium at the same 

corresponding ratio e/r. The effective contact area and effective width may be used to determine the 

ultimate load for the foundation, which carries eccentric loading. Figure 7.11 shows that the 

separation zones have upward settlements. 

 

The effective contact width c for the circular raft is given in a non-dimensional form in Figure 7.12. 

Depending on the nature of the load eccentricity and the radius of the raft, once the magnitudes of 

the effective width and the effective area are determined, they can be used in Equation 7.6 to 

determine the ultimate load of the raft. 
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Figure 7.11 Settlements s [cm] under rigid circular raft at different values of e/r 

 

 

 
 

Figure 7.12 Diagram to determine the contact width c of the circular raft by eccentric loading 
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Example 7.4 Elastoplastic analysis of a raft resting on Continuum medium 

 

1 Description of the problem 

 

One of the difficulties by applying the Continuum model to practical problems is the appearance of 

the high contact pressures at the raft edges, especially when the raft carries heavy loads. The 

appearance of plastic zones at the raft edges is related to the traditional mathematical soil models 

used in the analysis, which depend on the theory of elasticity. Therefore, an application example is 

carried out to show the applicability of the developed nonlinear analysis to redistribute the high 

contact pressures at the edges of both elastic and rigid rafts. 

 

A rectangular raft with dimensions of 8 × 16 [m
2
] is chosen and subdivided into 512 square 

elements. Each element has a side of 0.5 [m] as shown in Figure 7.13. The raft carries a uniform load 

of 600 [kN/m
2
]. 

 

 
 

Figure 7.13 Raft geometry, loading and FE-Net 
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2 Soil properties 

 

The raft rests on a homogeneous sand layer of thickness 10 [m], overlying a rigid base. The sand 

layer was supposed to have the following parameters: 

 

Modulus of compressibility   Es = 12 000 [kN/m
2
] 

Poisson’s ratio     s = 0.25 [-] 

Unit weight     γs = 17.5 [kN/m
3
] 

Angel of internal friction   φ = 27.5 [°] 

Cohesion     c = 0.0  [kN/m
2
] 

Foundation depth under the ground surface tf = 0.5  [m] 

 

 

3 Raft material and thickness 

 

The raft material and thickness were supposed to have the following parameters: 

 

Raft thickness  d = 0.5  [m] 

Young's modulus Eb = 3 × 10
7
 [kN/m

2
] 

Poisson’s ratio  b = 0.15 [-] 

Unit weight  γb = 0.0 [kN/m
3
] 

 

Unit weight of the raft is chosen γb = 0.0 [kN/m
3
] to neglect the self-weight of the raft. 

 

 

4 Analysis 

 

The nonlinear analysis of the raft was carried out for both elastic and rigid rafts on Continuum 

medium. Two cases concerning the ultimate bearing capacity qult are considered as follows: 

 

i) The ultimate bearing capacity qult is uniform. 

Its value is obtained from Equation 7.6, qult = 1603 [kN/m
2
] 

 

ii) The ultimate bearing capacity qult is variable. 

The ultimate bearing capacity qult at the raft edges is determined from the second term of 

Equation 7.6, qult = γ1 tf Nd νd = 951 [kN/m
2
], while the ultimate bearing capacity qult at 

the raft center is determined from Equation 7.6 when the third term is doubled, qult = γ1 tf 

Nd νd + 2 γ2 B Nb νb = 1753 [kN/m
2
]. Figure 7.14 shows the contour lines of the variable 

ultimate bearing capacity qult 
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Figure 7.14 Contour lines of the variable ultimate bearing capacity qult [kN/m
2
] 

 

 

Unfortunately, until now there is no available method to determine the bearing capacity of the soil 

for irregular contact pressure, where the bearing capacity equations are derived for a uniform contact 

pressure under the foundation. In this example, the variability of qult under the raft is chosen 

according to the principle of equilibrium forces acting on the raft and the soil at the failure. In which, 

the part of ultimate bearing capacity from the second terms in Equation 7.6 is uniform. This part 

represents the influence of the applied pressure beside the foundation, γ1 tf Nd νd. The part of ultimate 

bearing capacity from the third term in Equation 7.6 has a triangle cross-section at the middle of the 

raft (Figure 7.15). This part represents the influence of the foundation geometry, γ2 B Nb νb. 

 

 

 
 

Figure 7.15 Ultimate bearing capacity at the soil failure (section a-a) 
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5 Results and discussions

 

The contact pressures q at section a-a of the raft in case of uniform qult are shown in Figures 7.16 and 

7.17, while those in case of variable qult are shown in Figures 7.18 and 7.19. These figures show that 

the linear analysis of the both elastic and rigid rafts gives high contact pressures at the raft edges. As 

it is expected due to the nonlinear analysis, the contact pressures shift from the edges to the center of 

the raft, and this leads to a loss of the bearing capacity. Figures 7.16 and 7.17, which represent case 

of uniform qult show that although the contact pressures over all nodes on the raft are less than the 

ultimate bearing capacity limit, but the contact pressures at the raft edges still higher than those at 

the center. In contrast for case of variable qult the contact pressures take a form similar in shape to the 

limit line of qult (Figures 7.18 and 7.19). 

 

 
 

 

Figure 7.16 Contact pressures q [kN/m
2
] at section a-a with and without limitation 

  (Elastic raft - uniform ultimate bearing capacity) 
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Figure 7.17 Contact pressures q [kN/m
2
] at section a-a with and without limitation 

  (Rigid raft - uniform ultimate bearing capacity) 

 

 
 

Figure 7.18 Contact pressures q [kN/m
2
] at section a-a with and without limitation 

  (Elastic raft - variable ultimate bearing capacity) 
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Figure 7.19 Contact pressures q [kN/m
2
] at section a-a with and without limitation 

  (Rigid raft - variable ultimate bearing capacity) 
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Figure 7.20 Moment my [kN.m/m] at section a-a with and without limitation  

  (Elastic raft - uniform ultimate bearing capacity) 
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Figure 7.21  Moment my [kN.m/m] at section a-a with and without limitation  

  (Elastic raft - variable ultimate bearing capacity) 
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8.1 Poisson’s ratio νs 

 

Poisson’s ratio νs for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be 

evaluated from the Triaxial test. Here, Poisson’s ratio νs can be determined from at-rest earth 

pressure coefficient Ko as follows 

 

(8.1)      

o

o
s

K

K




1
ν 

 

Some typical values for Poisson’s ratio are shown in Table 8.1 according to Bowles (1977). 

Poisson’s ratio in general ranges between 0 and 0.5. 

 

Table 8.1 Typical range of values for Poisson’s ratio νs according to Bowles (1977) 

 

Type of soil 
Poisson’s ratio 

νs [-] 

Clay, saturated  

Clay, unsaturated 

Sandy clay 

Silt 

Sand, dense 

Sand, coarse (void ratio = 0.4 - 0.7) 

Sand, fine grained (void ratio = 0.4 - 0.7) 

Rock 

0.4 - 0.5 

0.1 - 0.3 

0.2 - 0.3 

0.3 - 0.35 

0.2 - 0.4 

0.15 

0.25 

0.1 - 0.4 

 

 

8.2 Moduli of compressibility Es and Ws and unit weight of the soil γs 

 

The equations derived in chapter 1 for calculation of flexibility coefficients require either the moduli 

of compressibility for loading Es and reloading Ws or moduli of elasticity for loading E and reloading 

W for the soil. The yielding of the soil is described by these elastic moduli. The moduli of 

compressibility Es and Ws can be determined from the stress-strain curve through a confined 

compression test (for example Odometer test) as shown in Figure 8.1. In this case, the deformation 

will occur in the vertical direction only. Therefore, if the moduli of compressibility Es and Ws are 

determined from a confined compression test, Poisson’s ratio will be taken νs = 0.0. If the other 

moduli of elasticity E and W are used in the equations derived in chapter 1, Poisson’s ratio will be 

taken to be νs  0. In general, Poisson’s ratio ranges in the limits 0 < νs < 0.5. 
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Figure 8.1 Stress-strain diagram from confined compression test (Oedometer test) 

 

 

The modulus of compressibility Es [kN/m
2
] (or Ws [kN/m

2
]) is defined as the ratio of the increase in 

stress Δσ to decrease in strain Δε as (Figure 8.1) 
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where: 

Δσ´  Increase in stress from σv to σom   [kN/m
2
] 

σv  Stress equal to overburden pressure   [kN/m
2
] 

σom Stress equal to expected average stress on the soil [kN/m
2
] 

Δε´  Decrease in strain due to stress from σv to σom [-] 

Δσ´´  Increase in stress due to reloading   [kN/m
2
] 

Δε´´  Decrease in strain due to reloading   [-] 

 

The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness. 

For an increase in effective stress Δσ to decrease in void ratio Δe, the moduli of compressibility Es 

[kN/m2] and Ws [kN/m2] are then expressed as 
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where: 

m´v Coefficient of volume change for loading  [m
2
/kN] 

m´´v Coefficient of volume change for reloading  [m
2
/kN] 

e´o  Initial void ratio for loading    [-] 

e´´o  Initial void ratio for reloading    [-] 

Δe´ Decrease in void ratio due to loading   [-] 

Δe´´  Decrease in void ratio due to reloading  [-] 

 

The values of Es and Ws for a particular soil are not constant but depend on the stress range over 

which they are calculated. Therefore, for linear analysis it is recommended to determine the modulus 

of compressibility for loading Es at the stress range from σv to σom, while that for reloading Ws for a 

stress increment equal to the overburden pressure σv. On the other hand, since the modulus of 

compressibility increases with the depth of the soil, for more accurate analysis the modulus of 

compressibility may be taken increasing linearly with depth. Also, according to Kany (1976) the 

moduli of compressibility Es and Ws may be taken depending on the stress on soil. In these two 

cases, the moduli of compressibility Es and Ws can be defined in the analysis for several sub-layers 

instead of one layer of constants Es and Ws. 

 

As a rule, before the analysis the soil properties are defined through the tests of soil mechanics, 

particularly the moduli of compressibility Es and Ws. For precalculations Table 8.2 for specification 

of the modulus of compressibility Es can also be used. 

 

According to Kany (1974), the values of Ws range between 3 to 10 times of Es. From experience, the 

modulus of compressibility Ws for reloading can be taken 1.5 to 5 times as the modulus of 

compressibility Es for loading. 

 

For geologically strongly preloaded soil, the calculation is often carried out only with the modulus of 

compressibility for reloading Ws. In this case, the same values are defined for Es and Ws. 

 

Matching with the reality, satisfactory calculations of the settlements are to be expected only if the 

soil properties are determined exactly from the soil mechanical laboratory, field tests or back 

calculation of settlement measurements. 

 

Table 8.2 shows mean moduli of compressibility Es and the unit weight of the soil γs for various 

types of soil according to EAU (1990).  
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Table 8.2 Mean moduli of compressibility Es and the unit weight of the soil γs  

for various types of soil 

 

Type of soil 

Unit weight 

γs  [kN/m
3
] Modulus of 

compressibility 

Es  [kN/m
2
] above 

water 

under 

water 
 
Non-cohesive soil 

Sand, loose, round 

Sand, loose, angular 

Sand, medium dense, round 

Sand, medium dense, angular 

Gravel without sand 

Coarse gravel, sharp edge 

18 

18 

19 

19 

16 

18 

10 

10 

11 

11 

10 

11 

   20000 -   50000 

   40000 -   80000 

   50000 - 100000 

   80000 - 150000 

 100000 - 200000 

 150000 - 300000 

 
Cohesive soil 

Clay, semi-firm 

Clay, stiff 

Clay, soft 

Boulder clay, solid 

Loam, semi-firm 

Loam, soft 

Silt 

 
 

19 

18 

17 

22 

21 

19 

18 

 
 

9 

8 

7 

12 

11 

9 

8 

 
 

     5000 -   10000 

     2500 -     5000 

     1000 -     2500 

   30000 - 100000 

     5000 -   20000 

     4000 -     8000 

     3000 -   10000 

 

 

8.3 Moduli of elasticity E and W  

 

In the program ELPLA, the equations derived in chapter 1 to determine the flexibility coefficients are 

used with moduli of elasticity E and W for unconfined lateral strain with Poisson’s ratio νs  0. It 

must be pointed out that, when defining Poisson’s ratio by νs = 0 (limit case), the moduli of 

compressibility Es and Ws for confined lateral strain (for example from Odometer test) also can be 

used. 

 

The modulus of elasticity is often determined from an unconfined Triaxial compression test, Figure 

8.2. Plate loading tests may also be used to determine the in situ modulus of elasticity of the soil as 

elastic and isotropic. 
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Figure 8.2 Modulus of elasticity E from Triaxial test 

 

 

It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of 

compressibility Es, Ws and Poisson’s ratio νs for the soil as 

 

(8.4)      








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
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s

s

ss
s

WW

EE
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ν2ν1
 

ν1

ν2ν1
 

2

2

 

 

Equation 8.4 shows that: 

 

- In the limit case νs = 0 (deformation without lateral strain), the values of E and Es (also 

 W and Ws) are equal 

 

- In the other limit case νs = 0.5 (deformation with constant volume), the moduli of 

 elasticity will be E = 0 × Es and W = 0 × Ws. In this case, only the immediate settlement 

 (lateral deformation with constant volume) can be determined. By the other way, the 

 second term in Steinbrenner’s formula (1.51) will be omitted, if Poisson’s ratio νs = 0.5 

 is used 

 

Table 8.3 shows some typical values of modulus of elasticity according to Bowles (1977). 
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Table 8.3 Typical range of moduli of elasticity E for selected soils 

 

Type of soil 
Modulus of elasticity 

E [kN/m
2
] 

 
Very soft clay 

Soft clay 

Medium clay 

Hard clay  

Sandy clay 

Silt 

Silty sand 

Loose sand 

Dense sand 

Dense sand and gravel 

Loose sand and gravel 

Shale 

 
3000 -       3000 

2000  -       4000 

4500 -       9000 

7000 -     20000 

          30000 -     42500 

2000  -     20000 

5000 -     20000 

          10000 -     25000 

          50000 -   100000 

          80000 -   200000 

          50000 -   140000 

        140000 - 1400000 

 

 

8.4 Compression index Cr und initial void ratio eo 

 

In case of clayey soil it is recommended to use the settlement parameters Cc, Cr and Cs to represent 

the elastic properties of the soil in the computation of consolidation settlements. These parameters or 

indices can be obtained directly from the consolidation test or indirect using some empirical 

equations such as Equations 8.7 and 8.8. 

 

Compression index Cc from consolidation test 

 

The typical relationship between the void ratio e and effective stress σ obtained from the 

consolidation test is shown in Figure 8.3. The slope of the end part of the e versus log σ curve is 

denoted as the Compression index Cc and computed as 

 

(8.5)      

1

2

σ

σ
 log

Δe
Cc  

 

By analogy, the other indices Cr and Cs can be obtained as shown in Figure 8.3 and Equation 8.6 

 

(8.6)      

i

cr

e
CC

σ

σ
 log

Δ
or    

2

 

where: 

Cr  Recompression index    [-] 

Cs  Swell index     [-] 

Δe Change in void ratio between σi and σ2 [-] 

σi Any pressure along the appropriate curve [kN/m
2
] 
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Figure 8.3 Relationship between void ratio and effective stress obtained from consolidation test 

 

 

Compression index Cc from empirical equations 

 

Because of the number of consolidation tests to obtain the compression indices for a given project is 

limited, it is often desirable to obtain approximate values by using other soil parameters which are 

more easily determined. Approximate values may be used for preliminary calculations or to check 

the laboratory data. 

 

For normally consolidated clays Terzaghi/ Peck (1967), on the basis of research on undisturbed 

clays, proposed the following equation to obtain the Compression index Cc [-] from the liquid limit 

of the soil LL [%] 

 

(8.7)      )10( 009.0  LLCc 

 

Azzouz (1976) lists several equations to obtain the compression index, one of them is given below to 

obtain the Compression index Cc [-] from the initial void ratio eo [-] of the soil 

  

(8.8)      )35.0( 15.1  oc eC 

 

Typical values of compression and swell indices as well as the corresponding void ratio at stress σo = 

10 [kN/m²] are presented in the following table according to Gudehus (1981). The compression 

index Cc is valid for loading while Cs is valid for both heaving and reloading. 
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Recompression index is calculated from the plasticity index using the following correlations 

(Kullhawy and Mayne (1990)): 

370

PI
Cr   

where PI is the plasticity index in percent. 

 

F.H. Kullhawy, P.H. Mayne: Manual on Estimating Soil Properties for Foundation Design, 

Electric Power Research Institute, EPRI, 1990. 

 

 

Table 8.4 Compression and swell indices depending on the initial void ratio 

 

Soil type 
Compression index 

Cc [-] 

Swell index 

Cs [-] 

Initial void ratio 

eo [-] 
 
Gravely sand 

Fine sand, dense 

Fine sand, loose 

Coarse silt 

Clayey silt 

Kaolin-Silt 

Silt 

Clay 

Peat 

 
0.001 

0.005 

0.01 

0.02 

0.03 - 0.6 

0.1 

0.1 - 0.3 

0.5 

1 

 
0.0001 

0.0005 

0.001 

0.002 

0.01 - 0.02 

0.03 

0.03 - 0.1 

0.4 

0.3 

 
0.3 

0.5 

0.7 

0.8 

0.9 - 1.2 

1.5 

1.2 - 2.5 

5 

10 

 

 

8.5 Shear parameters φ and c 

 

Angle of internal friction υ and cohesion c are physical soil properties for determining bearing 

capacity of the soil, they are called also shear parameters. The shear parameters υ and c can be 

obtained from shear test or Triaxial test. They are usually obtained for a certain soil by carrying out 

three shear tests with different stresses. The results of such series can be plotted as points in τf-σ 

diagram as shown in Figure 8.4. 
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Figure 8.4 Shear strength at variable normal stress 

 

 

For many soil types, the points lie quite exactly in a straight line. The intersection of the line with y-

axis gives the value of cohesion c, while the inclination of the line gives the angle of internal friction 

υ. The straight line Equation 8.9 is called Coulomb’s friction law for shear strength 

 

(8.9)      υtan  στ  cf 

As known from the pore water pressure u that when the effective stress σ´ = σ - u is used instead 

of the normal stress σ, Equation 8.9 becomes 

 

(8.10)      υtan  στ  cf 

 

where: 

c´ Effective cohesion   [kN/m
2
] 

υ´ Effective angle of internal friction [°] 

 

When the pore excess water pressure cannot drain, at least quickly, from the soil sample in the shear 

test, undrained condition occurs 

 

(8.11)      uuf c υ στ  

 

where: 

cu Undrained cohesion    [kN/m
2
] 

υu Undrained angle of shearing resistance [°] 

 

In a fully saturated soil υu = 0. 

 

You can write the shear parameters without the index u, if it is clear that the ultimate bearing 

capacity of the saturated soil is being without volume changes. The ultimate bearing capacity of the 

soil is often determined without considering the pore water pressure according to Figure 8.4 and 

Equation 8.9. Mean average values of the angle of internal friction υ and cohesion c for various 

Normal stress σ [kN/m
2
] 

υ 

S
h
ea

r 
st

re
n
g
th

 τ
f  

[k
N

/m
2
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c 
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types of soil are listed in Table 8.5 according to EAU (1990). These values are used only for 

preliminary calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.5 Mean average values of shear parameters according to EAU (1990) 

 

Type of soil 

Angle of 

internal 

friction 

υ or υ´ [°] 

Cohesion 

c´  [kN/m
2
] cu [kN/m

2
] 

 
Non-cohesive soil 

Sand, loose, round 

Sand, loose, angular 

Sand, medium dense, round 

Sand, medium dense, angular 

Gravel without sand 

Coarse gravel, sharp edge 

 
 

30 

32.5 

32.5 

35 

37.5 

40 

 
 

- 

- 

- 

- 

- 

- 

 
 

- 

- 

- 

- 

- 

- 

 
Cohesive soil 

Clay, semi-firm 

Clay, stiff 

Clay, soft 

Boulder clay, solid 

Loam, semi-firm 

Loam, soft 

Silt 

Peat 

 
 

25 

20 

17.5 

30 

27.5 

27.5 

27.5 

15 

 
 

25 

20 

10 

25 

10 

- 

- 

5 

 

     50 - 100 

     25 -   50 

     10 -   25 

   200 - 700 

     50 - 100 

     10 -   25 

     10 -   50 

          - 
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Explanations about Table 8.5: 

 

υ Actual angel of internal friction 

υ´ Effective angle of internal friction; for non-cohesive soil is υ = υ´ 

c´ Effective cohesion referred to υ´ 

cu Undrained apparent cohesion at zero friction for a saturated cohesive soil 

 

 

8.6 Modulus of subgrade reaction ks 

 

It is important to say that the modulus of subgrade reaction ks is not a soil constant, but it can be 

related to the elastic parameters Es and νs of the soil.   

  

It may be determined from in situ plate loading test. This test is generally performed using a circular 

steel plate (30 in diameter) thick enough so that the bottom plate will settle uniformly under a 

vertical load. The modulus of subgrade reaction ks [kN/m
3
] is defined as the ratio between the soil 

pressure q [kN/m
2
] and corresponding settlement s [m], Equation 8.12 

 

(8.12)      
s

q
ks  

 

 

In practice the plate would not stress the same soil strata as the full size foundation. Therefore, the 

result from a plate loading test may give quite misleading results if the proposed foundation is very 

big. The soft layer of soil in Figure 8.5 is unaffected by the plate loading test but would be 

considerably stressed by the foundation. Therefore, it is recommended to evaluate the modulus ks 

from the elastic parameters Es and νs of the soil. 

 

 

 
 

Figure 8.5 Illustration of how a plate loading test may give misleading results 

 

  Full size foundation 

Rigid base 

Bulb of pressure 
Firm soil 

Plate loading test 

Soft layer 
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A reasonable approximation of modulus of subgrade reaction ks can be obtained from the allowable 

soil pressure qall according to Bowles (1977). This way is presented on the assumption that the 

allowable soil pressure is based on some maximum amount of settlement s, including a factor of 

safety FS. Accordingly, the modulus of subgrade reaction ks is given by 

 

(8.13)      
S

q
SFk all

s    

 

The modulus of subgrade reaction ks [kN/m
3
] for a settlement of s = 0.0254 [m] equal to s = 1.0 [m] 

and a factor of safety FS = 3 can be taken as 

 

(8.14)     all
all

s q
q

k  120
0254.0

 3  

 

In case of carrying out the analysis with constant modulus of subgrade reaction, it is recommended 

to determine the modulus of subgrade reaction from settlement calculation. More complicated 

analysis for irregular foundation on variable moduli of subgrade reactions is available in the program 

ELPLA. Furthermore, the moduli of subgrade reactions can be improved through the calculated 

contact pressures and settlements by iteration. 

 

The following Table 8.6 shows the approximate average values of ks according to Wölfer (1978). 

These values may be used only for primary calculation. 

Table 8.6 Typical average values of moduli of subgrade reactions ks for selected soils 

 

Type of soil 
Modulus of subgrade reaction 

ks [kN/m
3
] 

 
Peat 

Fill of sand and gravel 

Wet clayey soil 

Moistured clay 

Dry clay 

Hard dry clay 

Coarse sand 

Coarse sand + small amount of gravel 

Fine gravel + small amount of gravel 

Middle size gravel + fine sand 

Middle size gravel + coarse sand 

Large size gravel + coarse sand 

 
5000 - 10000 

10000 - 20000 

20000 - 30000 

40000 - 50000 

60000 - 80000 

100000 

80000 - 100000 

80000 - 100000 

80000 - 100000 

100000 - 120000 

120000 - 150000 

150000 - 200000 

 

 

8.7 Allowable bearing capacity of the soil qall 

 

The value of allowable bearing capacity of the soil is based on theoretical as well as experimental 

investigation. Such a value usually includes a factor of safety of 3 (qult = 3 qall). This indicates that 

the design loads used in establishing the bearing capacity area of the foundation must be service 
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loads with no reduction. 

 

Approximate allowable bearing capacity qall of common types of soils are listed in Table 8.7 

according to Bakhoum (1986) and can be taken for primary calculations. 

 

Table 8.7 Approximate allowable bearing capacity qult of common types of soils 

 

Type of soil 
Allowable bearing capacity 

qall  [kN/m
2
] 

 
Noncohesive soil 

Loose sand 

Medium sand 

Dense sand 

Hard rock 

 
 

100 

200 

500 

5000 

 
Cohesive soil 

Soft-medium clay 

Stiff clay 

Very stiff clay 

Hard clay 

 
 

90 

150 

300 

500 

 

 

8.8 Settlement reduction factor α 

 

As according to experience the real consolidation settlements are different from those calculated,  

the settlements s are multiplied by a factor α according to German standard DIN 4019, page No. 1. 

According to this standard the following reduction factors in Table 8.8 can be applied: 

 

Table 8.8 Reduction factors α according to DIN 4019, page No. 1 

 

soil type  

Sand and silt 0.66 

Normally and slightly over consolidated clay 1.0 

Heavily over consolidated clay 0.5 - 1 

 

 

In the program ELPLA, the moduli of compressibility Es and Ws are divided by α as follows 

 

(8.15)      
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In the final result, this process is equivalent to the following Equation 8.16 

 

(8.16)      SS  α 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Young's modulus was estimated from the following parabolic correlation between N of SPT 

and drained Young's modulus E proposed by Denver (1982): 

 

E = 7 N
0.5

 [Mpa]                                                       (1) 

 

 

[3] Denver H. (1982): “Modulus of elasticity for sand determined by SPT and CPT”, 

Proceedings of the second European Symposium on penetration testing. 
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9 List of examples for the calculation of foundations by the program ELPLA 

9.1 Introduction 

 

When ordering package ELPLA, a CD is delivered. It contains the programs and 20 project data files 

for test purposes, which were described in this book. These data introduce some possibilities to ana-

lyze slab foundations by ELPLA. 

 

Firstly, the numerical examples are carried out completely to show the influence of different subsoil 

models on the results. Furthermore, different calculation methods for the same subsoil model are 

applied to judge the computation basis and the accuracy of results. In some cases the influences of 

geological reloading, soil layers and also the structure rigidity are considered in the analysis. 

 

For this purpose, the following numerical examples introduce some possibilities to analyze founda-

tions. Many different foundations are chosen, which are considered as some practical cases may be 

happened in practice. All analyses of foundations are carried out by ELPLA, which was developed 

by Kany/ El Gendy (2007). 

 

In the next pages, names of files of the numerical examples, content and short description of the ex-

amples are listed. 
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9.2 Examples of chapter 2 

 

Example 2.1 A square raft on irregular subsoil 

 
 
File name Content 
 
un1  Modulus of subgrade reaction - method 3 (Interpolation) 

un2  Layered soil medium (elastic raft) - method 6 (Interpolation) 

un3  Layered soil medium (rigid raft) - method 8 (Interpolation) 

 

un4  Modulus of subgrade reaction - method 3 (Subareas method) 

un5  Layered soil medium (elastic raft) - method 6 (Subareas method) 

un6  Layered soil medium (rigid raft) - method 8 (Subareas method) 

 

un7  Modulus of subgrade reaction - method 3 (regular layer) 

un8  Layered soil medium (elastic raft) - method 6 (regular layer) 

un9  Layered soil medium (rigid raft) - method 8 (regular layer) 

 

 
 

 

 

 

a) A=12×0.83 =10.00 m 

500 [kN] 500 [kN] 

500 [kN] 500 [kN] 

1 2 3 13 

14 15 16 26 

79 80 81 91 

169 
157 158 159 

z = 10.0 [m] 

Compressible layer 

Rigid base 

d = 0.4 [m] 

b) 

A
=

1
2
×

0
.8

3
 =

1
0

.0
0

 m
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Example 2.2 An irregular raft on irregular subsoil 

 
 
File name Content 
 
gb1  Linear contact pressure - method 1 

gb2  Constant modulus of subgrade reaction - method 2 

gb3  Variable modulus of subgrade reaction - method 3 

gb4  Modification of modulus of subgrade reaction by iteration - method 4 

gb5  Isotopic elastic half-space soil medium - method 5 

gb6  Layered soil medium by iteration (elastic raft) - method 6 

gb7  Layered soil medium by elimination (elastic raft) - method 7 

gb8  Layered soil medium (rigid raft) - method 8 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

800 

1538 

1565 

1350 

1368  

1254 

1600 120  

1265 

500 

1560 

350 

750 
89  

2150 
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2.0 

x [m] 10.0 8.0 6.0 4.0 

0 

2.0 

12.0 

10.0 

8.0 

6.0 

4.0 

0.0 12.0 

y [m] 

B2 

(9) 

(8) 

) 

(7) 

(6) (5) (4) 

(3) (2) (1) 

B1 

B4 

B3 
2700 

2000 

3000 

2500 
5400 

950 

800 900 

2700 

2500 

(11.00) 
(12.00) 

(1.30) 

) 
Sand 

(40.00) 

(0.00) 

Silt 

a) 

b) 

Example 2.3 System of footings on irregular subsoil 

 
 
File name  Content 
 
foi   Footing i (i = 1 to 9) 

Group   Group of footings 

 

Dir: Interpolation Analysis with limit depth using interpolation 

Dir: LdrFooting3 Analysis with limit depth related to footing 3 

Dir: LdrFooting5 Analysis with limit depth related to footing 5 

Dir: Without LD Analysis without limit depth 
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II 

1265 1560 800 

1600 

1350 

1368 1538 1568 1254 

1450 

750 2150 

1.3 1.4 1.2 1.5 1.5 1.3 1.45 1.45 

5 

1.6 1.0 1.3 

I 

III s s 

(8.0, 8.0) 

8.0) 

X 

y’ 

0.7 m 

x’ 

’ 

8.0 m 15.0 m 

m 

6.0 m 

(0.0, 0.0) 

Y 

b) 

a) 

8
.0

 m
 

1
4
.0

 m
 

6
.0

 m
 

1
.4

 
1

.4
 

1
.3

 
1

.4
 

1
.4

 
1

.4
 

1
.

5
 

1
.3

5
 1

.3
5
 

1
.4

 

9.3 Examples of chapter 3 

 

Example 3.1 Settlements outside the foundation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
File name Content 

se1             Contact area I 

se2             Contact areas II + III 
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14 × 0.72 = 10.08 m 14 × 0.72 = 10.08 m 
b) Plan 

P1 = 500   [kN] 

P2 = 1000 [kN] 

P3 = 2000 [kN] 

P1 

P3 P2   

P1 

1 

P1 P1 P1 

P1 P1 P1 

P2 P2 

P2 

P2 

P2 P2 

2 

P2 

2 

P   P3 

New building II Old building I 

a a 

a) Section a-a 
Rock 

(0.00) 

Es = 5000    [kN/m2] 

Ws = 15000 [kN/m2] 

γs  = 18       [kN/ m3] 

Eb = 2×107 [kN/m2] 

νb  = 0.15   [-] 

γb  = 0.0     [kN/ m3] 

P3   P3   P2 

2 

  P2   P2   P2   

(7.20) 

(1.50) 

Clay, stiff plastic 

plastic 

d =1.0 m 

1
4
 ×

 0
.7

2
 =

 1
0
.0

8
 m

 

Example 3.2 Influence of a new neighboring building on an old one 

 
 
File name Content 
 
ei1  Only new building 

ei2  New building + Old building 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Theory for the calculation of shallow foundations 

Chapter 9                                        List of examples 

 

 9 - 8 

p 

P P 

y 

x 

21.0 [kN] 

B3 (20.5, 2.5) 

B2 (17.0, 13.5) 

B1 (2.0, 3.5) 

a) 
24.0 

0.0 

12.0 

8.0 

4.0 

20.0 16.0 10.0 

0 

6.0 0.0 

T, Clay 
Es = 10000  [kN/m2] 

Ws = 30000 [kN/m2] 

γs  = 18       [kN/ m3] 

B1 

(14.00) 

GW (12.00) 

(7.00) 
(6.30) 

(5.50) 

(0.00) 

Sst, Sandstone 
Es = 160000  [kN/m2] 

Ws = 400000 [kN/m2] 

γs  = 21          [kN/ m3] 

B3 B2 

b) 

P = 18000 [kN] 

p = 300 kN/m] 

1
3

.5
 [

m
] 

Example 3.3 Influence of ground lowering due to a tunnel on a building 

 
 
File name Content 
 
tu1  Without tunnel 

tu2  With tunnel 
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9.4 Examples of chapter 4 

 

Example 4.1 Interaction of two circular rafts 

 
 
File name Content 
 
ha1  Circular raft I 

ha2  Circular raft II 

h12  Circular raft I + Circular raft II       

 
 

 

 

Example 4.2 Settlement behavior of four containers 

 
 
File name Content 
 
sta  Circular raft A 

stb  Circular raft B 

stc  Circular raft C 

std  Circular raft D 

ste  Analysis of system of rigid circular rafts A + B 

 
 

 

 

 

 

 

 

 

GW Sand + Gravel  

Es = 15 000 [kN/m
2
] 

Silt + Clay 

Es = 15 000 [kN/m
2
] 

327.00 

F = 263 [m
2
] 

p = 352 [kN/m 
2
] 

332.00 u. NN. A B 
5 5 

4 4 

3 3 1 1 

31.00 

2 2 

b) 
D C 

a) 

2
9

.0
0

 [
m

] 1
8

.3
0

 [
m

] 
1

5
.3

 [
m

] 
3
 6

 

Raft II Raft I 

P1 =1250 [kN] 

P2 =1000 [kN] 

a a P1 P1 

1 

P2 P2 

y 

x 



Theory for the calculation of shallow foundations 

Chapter 9                                        List of examples 

 

 9 - 10 

16 

16 

15.0 m 

18 

8 

20 24 22 X [m] 14 

4.0 

2.0  

2.4 

10 

12 

14 

16 

18 

20 

Y [m] 

8 

I 

III 

IV 

II 

41 38 

37 

33 

29 26 

30 

34 36 

27 

31 

35 

5 

39 

28 

43 

40 

32 

42 

25 24 22 23 

3 

21 

12 11 

20 

0 

19 18 

8 

17 

5 

15 14 13 

4 3 2 1 

10 9 8 7 6 

8.0 

2.0 
1.6 1.6 2.4 2.4 

2.0 

3.0 
3.0 

1.5 
3.0 3.0 3.0 

3.0 3.0 3.0 
3.0 

3
.0

 
3

.0
 

3
.0

 
3

.0
 

3
.0

 
3

.0
 

3
.0

 
1

.5
 

1
2

.0
 

2
.0

 

3
.0

 

1
.5

 
1

.5
 

2
.0

 
2

.0
 

2
.0

 
2

.0
 

2
.0

 
1

.0
 

1
.0

 
0

.5
 

8
.0

 

Example 4.3 Interaction of two rafts considering two additional footings 

 
 
File name Content 
 
sf1  Footing III 

sf2  Footing IV 

 

fl1  Flexible raft I 

fl2  Flexible raft II 

f12  Analysis of system of flexible rafts I + II    

 

el1  Elastic raft I 

el2  Elastic raft II 

e12  Analysis of system of elastic rafts I + II + II 

 

rg1  Rigid raft I 

rg2  Rigid raft II 

r12  Analysis of system of rigid rafts I + II 
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Example 4.4 Interaction of two square rafts constructed side by side 

 
 
File name  Content 
 
Rf1_sys  Raft system (raft I) 

Rf2_sys  Raft system (raft II) 

Rf1_2_sys  Raft system (rafts I + II) 

Rf1   Without interaction (raft I) 

Rf2   Without interaction (raft II) 

Rf1_2_*cm  Case 1: (c = *cm) 

Rf1_Nachbar_*cm Case 2: raft I (c = *cm) 

Rf2_Nachbar_*cm Case 2: raft II (c = *cm) 

Rf1_2   Case 3 

Rf1_2_Fugen  Case 4 

 
 

 

 

 

 

 

 

 

 

 

 

200 [kN/m
2
] 

0.5 [m] 

400 [kN/m
2
] 

8×1.5 = 12 [m] 

2×1=2 [cm] 

8×1.5 = 12 [m] 

Raft I Raft II Plan 

Section 

Detail A Detail B 

A 

B 

2 [cm] raft thickness 

2×1=2 [cm] 

a a 

8
×

1
.5

 =
 1

2
 [

m
] 
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Example 4.5 Analysis of a swimming pool 

 
 
File name Content 
 
slr  Swimming pool left + right (without joint) 

smt  Swimming pool left + right (with interaction and with shearing forces) 

sol  Swimming pool left 5 (without interaction) 

sor  Swimming pool right 5 (without interaction) 

ssy  Swimming pool left + right 5 (with interaction and without shearing forces) 

au*  Influence of the filling around Swimming pool (uniform load *) 

 

 
 

 

 

 

 

 

 

 

 

 

10 [m] 

[m] Plan 

4 [m] 3 [m] 5 [m] 

B5 (A) 

586.80 

N 

Section A-A 

587.60 

586.15 
586.10 

A 

Original ground surface 

A 

line 

Property 

B4 (B) 

B2 

(A) 

B3 (D) 

B1 (C) 2
5
 [

m
] 
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800 

1538 

1565 

1350 

1368  

1254 

1600 120  

1265 

500 

1560 

350 

750 
89  

2150 

d  

b  c  

a  

P  

P  
P  

P  

Raft 

P = 9000    [kN] 

Es = 2×10
7
 [kN/m

2
] 

νb = 0.15    [-] 

Compressible layer 

Es = 10000 [kN/m
2
] 

9.5 Examples of chapter 5 

 

Example 5.1 Rigidity of simple square raft 

 
 
File name Content 
 
th*  Raft thickness from 0.0 to 0.9 [m] 

t1*  Raft thickness from 1.0 to 2.0 [m] 

txx  Rigid raft 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5.2 Rigidity of irregular raft on irregular subsoil 

 
 
File name Content 
 
g00  Raft thickness d = 0.0 [m] 

gb*  Raft thickness from 0.1 to 0.9 [m] 

g1*  Raft thickness from 1.0 to 1.9 [m] 

g20  Raft thickness d = 2.0 [m] 

gxx  Rigid raft 
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66.00 [m] 

L=18×3.60=64.80 [m] 

3.6 3.6 

17.55 [m] 

3.6 l=3.6 

a) Longitudinal A-B 

b) Plan (section E-F) 

c) Cross-section C-D 

9 

8 

7 

6 

5 
4 

3 

13 

12 

11 

10 

1 

2 

k 

D 

C 

E F 

B A 
Columns 0.50/0.50 

Columns 0.40/0.50 0.40 

4
7
.7

0
 [

m
] 

h
=

3
.1

5
 

3
.1

5
 

6
.1

 
3
.1

5
 

6
.1

 3
.0

 

9.6 Examples of chapter 6 

 

Example 6.1 Analysis of a raft for a high rise building 

 
 
File name Content 

raft1  Only raft 

raft2  Raft - cellar 

raft3  Raft - cellar - superstructure 

raftr  Rigid raft 
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1. Floor   (4.00) 

2. Floor   (7.00) 

5. Floor   (16.00) 

4. Floor   (13.00) 

3. Floor   (10.00) 

Ground  (0.00) 

551 

21 

470 

389 

308 

227 

1 

621 

Z 

X 
Y 

5×5 = 25 m 

5×5 = 25 m 

Example 6.2 Verification of the iterative procedure 

 
 
File name  Content     
 
 

Raft Only raft 

Raft1 Raft - cellar 

Raft2 Raft - cellar - superstructure 

Raft3 Rigid raft 
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9.7 Examples of chapter 7 

 

Example 7.1 Verification of nonlinear analysis for Winkler's model 

 
 
File name Content 
 
fc1  Point load (linear analysis) 

fcn  Point load (non-linear analysis) 

fu1  Uniform load (linear analysis) 

fun  Uniform load (non-linear analysis) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0 [m] 

2.0 0.5 0.5 

250 [kN/m
2
] 

Footing borders 

Assumed influenced area borders 

Loading case a) 

Loading case b) 

1000 [kN] 
0

.5
 

0
.5

 
2

.0
 

3
.0

 [
m

] 

0
.1

2
 

0
.1

2
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2 

L 

L/4 

4 

L/4 

L/6 

x 

y 

B/4 

B/4 
B/6 

B 

ex 

ey N s 
1 

4 
5 

3 
5 5 

4 

3 
5 

2 

2 2 

N = 2000 [kN] 

e 

r = 5 [m] 

Example 7.2 Analysis of Rectangular foundation subjected to eccentric loading 

 
 
File name Content 
 
rz2  Zone (2) 

rz3  Zone (3) 

rz4  Zone (4) 

rz5  Zone (5) 

 

 

 

 

 

 

 

 

 

 

Example 7.3 Circular foundation subjected to eccentric loading 

 
 
File name Content 
 
Cir-e=1.75 e = 1.75 [m]  

Cir-e=2.00 e = 2.00 [m] 

Cir-e=2.25 e = 2.25 [m] 

Cir-e=2.50 e = 2.50 [m] 

Cir-e=2.75 e = 2.75 [m] 

Cir-e=3.00 e = 3.00 [m] 

Cir-e=3.25 e = 3.25 [m] 

Cir-e=3.50 e = 3.50 [m] 

Cir-e=3.75 e = 3.75 [m] 
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Example 7.4 Elastoplastic analysis of a raft resting on Continuum medium 

 
 
File name Content 
 
lin  Linear analysis 

non  Non-linear analysis 

 
 

 

L = 32×0.5 = 16 [m] 

a 

a 

B
 =

 1
6
×

0
.5

 =
 8

 [
m

] 

d = 0.5 

[m] Section 

p = 600 [kN/m
2
] 

Plan 
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