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Preface 

 

Various problems in geotechnical Engineering can be investigated by the program ELPLA. The 

original version of ELPLA was developed by the father of elastic foundation Prof. M. Kany, 

Prof. M. El Gendy and Dr. A. El Gendy. After the death of Prof. Kany, Prof. M. El Gendy and 

Dr. A. El Gendy further developed the program to meet the needs of practice.  

 

This book describes procedures and methods available in ELPLA to analyze circular cylindrical 

shells structures. It is also considered, circular cylindrical tank resting on any layered 

compressible soil as one unit taking into account the soil-structure interaction effect.  

 

The purpose of this text is to present the methods, equations, procedures, and techniques used 

in the formulation and development of the ELPLA function for analyzing tanks on different 

subsoil models. It is of value to be familiar with this information when using the software.   

 

An understanding of these concepts will be of great benefit in applying the software, resolving 

difficulties and judging the acceptability of the results. 

 

Two familiar types of subsoil models are considered, Winkler’s model and Continuum model. 

In addition, the simple assumption model is also considered. This model assumes linear contact 

pressure on the base of the tank. 

  

The mathematical solution of the circular cylindrical tanks is based on the Finite Element 

Method using axi-symmetric circular cylindrical shell elements. 

 

In which, axi-symmetric shell finite elements represent the tank wall and tank base according 

to the nature geometry of the structure. 

 

Based on his M.Sc. research, El Gendy, O. (2016) had carried out a numerical modification on 

the methods in ELPLA for analyzing rafts to be applicable for analyzing cylindrical water 

storage tanks. Many tested examples are presented to verify and illustrate the available methods. 

Some of verification examples for analyzing cylindrical water storage tanks on multi-layered 

soil carried out by El Gendy, O. (2016) are presented in the second part of this book. 

 

 

 

 

 

 

 

 

 

 

 

 

 



ELPLA 

 

 

1-4 

 

1 Mathematical model  

1.1 Introduction 

In this book, the structural behavior of circular cylindrical tanks resting on any layered 

compressible soil is investigated. In the developed mathematical models, tanks are subjected to 

static loading. Most of all numerical models of this research are new introduced in the program 

ELPLA 12 [13]. ELPLA was developed before to analyze floor slabs, shear walls, grids, frames, 

rafts and piled rafts using beam and plate elements as shown in Figure 1.1. Figure 1.2 shows 

the recent version of ELPLA 12 including the new aspect concerning the icon "Analysis of 

rotational shells". An axi-symmetric shell finite element formulation is added to analyze 

circular cylindrical tanks. The idea of using axi-symmetric shell finite element is to simulate 

the tank wall, tank base and subsoil as one unit taking into account the soil-structure interaction 

effect. Using the conditions of axial symmetry, enables to convert the completed three-

dimensional problem of super structure, foundation and soil into axi- symmetry problem. Base 

of the tank may be considered as rigid, elastic or flexible. For analyzing the base of the tank as 

elastic base, full compatibility between the structure elements and subsoil is occurred.  

 

 
 Aspects treated in ELPLA 11  
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 Aspects treated in ELPLA 12  
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1.2 Axi-symmetric shells of revolution 

1.2.1 Introduction 

Circular cylindrical shells analysis may be considered as an axi-symmetric shell structure 

problem. An axi-symmetric shell structure can be idealized by a series of conical frustum-

shaped elements as shown in Figure 1.7. This element was first suggested by Grafton and 

Strome (1963) and later its use was extended by Percy et al (1965). It may be noted that this 

single element has two ring nodes. Since both in-plan and out of plan displacements and forces 

have to be considered in shell structures, the displacement victor for each node contains axial 

and radial movements as well as rotation as shown in Figure 1.7 - b). Finite element analysis of 

axi-symmetric shells in the simplified approach of Grafton and Strome (1963) are presented by 

many authors. Some of them are Zienkiewicz/ Taylor (1967), Rockey et al (1975), Szilard 

(1986), and Melerski (2000). Szilard (1986) presented a more extensive analysis of axi-

symmetric shell structure with a computer program code. The following steps of the FE analysis 

of axi- symmetric shell structure depends on that of Rockey et al (1975) and Szilard (1986). 

1.2.2 Excerpt from the theory of shells of revolution 

The axi-symmetric shells of revolution are thin-walled shell structures, which are curved in one 

or two mutually perpendicular directions. The average surface of a rotating shell is formed by 

rotating a plane curve about a horizontal axis in its plane of rotation as shown in Figure 1.4 a). 

If the meridian curve for example a circle, an ellipse or a parabola, then shells are generated of 

revolution in the form of a sphere, a paraboloid or an ellipsoid. In construction, these shells are 

used as warehouses, tanks, towers, silos, etc.  

 

For the exposure provided in this research that they constantly and also axi-symmetric. The 

symmetry of the shell and the load allows it to perform the calculation in two dimensions. 

 

The theory of axi-symmetric shells is based on the following assumptions: 

 

- The shell thickness is small compared to the other dimensions. 

- The deformation is small, so the influence of shape changes on the distribution of  

   forces are negligible. 

- The claimed cross-sections remain plane in bending. 

- The material is isotropic and linear elastic. 
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 Applications of axi-symmetric shell structures 

Circular cylindrical shell 

Spherical shell 

Elliptical shell Parabolic shell Hyperbolic shell 

Cycloidal shell 

Conical shell 
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a) Axi-symmetric shell 

 
b) Axi-symmetric shell element 
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In the practical solution of axi-symmetrically loaded shells, the following external loads are 

considered: 

 

- Own weight 

- Live load 

- Liquid pressure 

- Earth pressure 

- Gas pressure 

- Lateral loads like wind, earthquakes, etc. 

1.2.3 External loads 

The load P per unit area that acts on the shell element is analyzed into two component (Figure 

1.4 b)): Pφ acts in the meridional direction and Pn acts in the direction normal to the surface. 

The load component Pθ is in any case zero due to the axi-symmetry of the shell. 

1.2.4 Internal forces 

The internal forces generated by the axi-symmetric loading are shown in Figure 1.4 b) with its 

positive directions. In addition to the membrane forces Nφ and Nθ, the components Qφ, Mφ and 

Mθ act in the bending state. 

 

In the most general case, each side of an element cut out of a thin shell is acted upon by five 

kinds of internal actions, namely 

 

1- Normal Forces (Nφ, Nθ). 

2- Tangential (in-plan) shearing force (Nθφ, Nφθ). 

3- Transverse (normal) shearing force (Qφ, Qθ). 

4- Bending moments (Mφ, Mθ). 

5- Torsional Moments (Mφθ, Mθφ). 

 

In an axi-symmetric system of loading, the transverse shearing force component (Qθ), the 

tangential shearing force components (Nθφ, Nφθ) and torsional moments (Mφθ, Mθφ) are not 

available. According to the approximation of Geckeler (1930) and the references of 

Timoshenko/ Woinowsky (1959), Bakhoum (1992) and Ventsel/ Krauthammer (2001), the 

equilibrium conditions can be written in a simplified form as: 

 

 

∂

∂φ
(NφRo) - NθR1 cos φ - Q

φ
Ro+ PφR1Ro= 0

∂

∂φ
(Q

φ
Ro)  +  NφRo + NθR1 sin φ + PnR1Ro= 0

-
∂

∂φ
(MφRo) + MθR1 cos φ + Q

φ
R1Ro= 0

}
  
 

  
 

 (4.1) 
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where: 

Ro The radius of the parallel circle, [m]. 

R1  The principal radius of curvature of a shell in the meridional plan, [m]. 

R2 The principal radius of curvature of a shell in the normal plan, [m]. 

φ The meridional angle formed by the extended normal to the surface and the axis of 

rotation. All points of a parallel circle make the same angle, [°]. 

θ  The circumferential angle that a meridian make with the reference meridian (θ = 0) 

along the parallel circle, [°]. 

 

These three equations contain five unknowns, so the problem is internally statically 

indeterminate. To calculate the internal forces Nφ, Nθ, Mφ, and Mθ, the membrane forces and the 

bending moments are expressed as functions of the displacements u and w: 

 

 

Nφ = 
Et

1-ν2
[

1

R1

(
du

dφ
- w)+

ν

R2

(u cot φ - w)]

Nθ = 
Et

1-ν2
[

1

R2

(u cot φ - w)+
ν

R1

(
du

dφ
- w)]

Mφ = -D [
1

R1

 
d

dφ
(

u

R1

+
1

R1

dw

dφ
 )+

ν

R2

(
u

R1

+
1

R1

dw

dφ
) cot φ]

Mθ = -D [
1

R2

(
u

R1

+
1

R1

dw

dφ
) cot φ +

ν

R1

 
d

dφ
(

u

R1

+
1

R1

dw

dφ
 )]
}
 
 
 
 

 
 
 
 

 (4.2) 

 

where: 

E Young's modulus of the shell material, [kN/m2]. 

ν Poisson's ratio of the shell material, [-]. 

t Shell thickness, [m]. 

u Displacement component in the meridional direction, [cm]. 

w Displacement component in the direction normal to the middle surface, [cm]. 

and, the flexural rigidity D is: 

 

  D = 
Et3

12(1-ν2)
 (4.3) 

    

Figure 1.5 show the position of the shell part AB before and after deformation, considering the 

displacement components u and w in meridional and normal directions, respectively. 
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 Shell displacement components u and w 

1.2.5 Shells of revolution geometry 

Table 1.1 show the geometry parameters of some types of shells of revolution. These parameters 

are the meridian curve equation, the maximum and minimum principal radii of curvature 

equations and the meridional or tangential angle equation. 

 

The meridional angle or the angle of the tangent can be written as: 

 

 tan φ =
dz

dr
 (4.4) 

 

The principal radius of curvature of the meridian can be written as: 

 

 R1= 
1

κ1

 = -

(1+ (
dr
dz
)

2

)

3/2

d
2
r

dz2

 (4.5) 
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dφ  
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u+du 
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The principal radius of curvature of the parallel circle can be written as: 

 

 R2 = 
1

κ2

= r(1+ (
dr

dz
)

2

)

1/2

 (4.6) 

 

where  

κ1  the curvature in the meridional direction. 

κ2  the curvature in the normal plan perpendicular to the meridian. 

 

The principal radii of curvature for convex shells of revolution formed by rotating curves of the 

second order about their axes of symmetry can also be computed from the following equations: 

 

 R1=
r0

(1+ ζ sin
2
φ)

3/2
, R2 = 

r0

(1+ ζ sin
2
φ)

1/2
 (4.7) 

 

Where the parameter r0 equals the value of the radii of curvature at φ = 0, i.e., at the vertex of 

the corresponding shell, and the parameter ζ takes on the following values: 

 

ζ = 0 for a spherical shell; 

ζ = -1 for paraboloids; 

ζ > -1 for ellipsoids and cycloids;  

ζ < -1 for hyperboloids. 
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Table 1.1 Types of shells of revolution 

Shell Geometry Parameters 

 

Cylindrical shell 

 

r = a = R2 

 

R1 = ∞ 

 

φ = 0 

 

 

 

Conical shell 

 

 r = r2- (
r2 - r1

z2

) z = r2- z tan φ   

 

R1 = ∞ 

 

R2 = s cot φ 

 

 φ = tan-1 (
r2 - r1

z2

)    

 

 

Spherical shell 

 

z2 + r2 = a2 

 

R1 = R2 = a 

 

φ = tan-1 (
r

z
) 

z 

r 

r = a = R2 

H 

C2 

r 

z 

s 

so 

φ 

C2 

r2 

R2 

r1 

z2 

z1 

C1, C2 

φ r 
R1 =  R2 

=  a 

z 
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Continue Table 1.1 Types of shells of revolution 

Shell Geometry Parameters 

 

Elliptical shell 

 

r2

a2
+

z2

b
2

 = 1 

 

R1=
a2b

2

(a2sin
2
φ+b

2
cos2φ)

3/2
 

 

R2 = 
a2

(a2sin
2
φ+b

2
cos2φ)

1/2
 

 

φ = tan-1 (-
b

a
√b

2

z2
-1) 

 

Cycloidal shell 

 

r = a (ψ + sin ψ), 

 

z = a (1 + cos ψ) 

 

where    - π ≤ ψ ≤ π 
 

R1= 2a√2+2 cos ψ   
 

R2 = 2a (
ψ

2sin ψ
+

1

2
)√2+2 cos ψ   

 

φ = tan-1 (
-sin ψ

1 + cos ψ
) 

 

 

 

 

 

 

 

 

 

 

φ 

a 

b 

z 

r 

R1 

C2 

C1 R2 

-

2a 
a 
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R1 

R2 

C2 
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r 
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Continue Table 1.1 Types of shells of revolution 

Shell Geometry Parameters 

 

Parabolic shell 

 

 z = b(1-
r2

a2
) 

  

R1=
a2

2b

1

cos3φ
= 

a2

2b
 sec3φ 

  

R2 = 
a2

2b

1

cos φ
= 

a2

2b
sec φ 

  

φ = tan-1 (
-2b

a2
 r) 

 

Hyperbolic shell  

 

r2

a2
-

z2

b
2

= 1 

 

R1=
a2b

2

(a2sin
2
φ+b

2
cos2φ)

3/2
 

 

R2 = 
a2

(a2sin
2
φ+b

2
cos2φ)

1/2
 

 

φ = tan-1 (
r

z
tan2ψ)= tan-1 (

b
2

a2
 
r

z
) 

 

ψ = tan-1(b/ a) 
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1.3 Analytical solution of circular cylindrical shells 

1.3.1 Introduction 

Analyzing the circular cylindrical shells has been considered by several authors by analytical 

solutions. We should mention that Flügge (1932) derived the governing differential equations 

for circular cylindrical shells in terms of displacements. Equations of the general theory of 

cylindrical shells were introduced by Donnel (1976). The analysis of circular cylindrical shells 

with uniform wall thickness is used in this study to verify the proposed mathematical model for 

analyzing water tanks.   

 

The analysis of circular cylindrical shells with uniform wall thickness can be considered as 

indicated in the next paragraphs according to the references of Timoshenko/ Woinowsky (1959), 

Bakhoum (1992) and Ventsel/ Krauthammer (2001). 

 
 Cylindrical tank with uniform wall thickness 

1.3.2 General equation of circular cylindrical shell 

To formulate the essential equation for determining the internal forces in a circular cylindrical 

shells with uniform wall thickness, consider the water tank in Figure 1.6 is submitted to the 

action of a water pressure. The water pressure px [kN/ m2] in the wall at any position x [m] from 

the base can be obtained from: 

 

 p
x
= p

o

(H – x )

H
 (4.8) 

 

where: 

po Pressure at the wall base, po = γw.H, [kN/m2] 

γw  Unite weight of the water, [kN/m3] 

H Height of the tank, [m] 

 

From the theory of elasticity, the differential equation for w can be obtained: 

 

 
d

2

dx2
(D

d
2
w

dx2
)+

E t w

a2
= p

x
 (4.9) 

t  

a  
H

  

po = γw.H 

a  
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where: 

D  Flexural rigidity (equation (4.3)). 

w Horizontal deflection along the r axis at any point at distance x from the base, [m] 

E Young's modulus of wall material, [kN/m2] 

t Wall thickness, [m] 

a Tank radius, [m] 

 

For a constant rigidity D, the above equation (4.9) may be written in the form: 

 

 
d

4
w

dx4
+4β

4
w = 

p
x

D
 (4.10) 

 

where β is a geometric parameter of the dimension [m-1] and equal: 

 

 β = √
3(1 - ν2)

a2 t2

4

 (4.11) 

 

A particular solution of the differential equation (4.10) is: 

 

 wp = 
p

x
 a2

E t
 (4.12) 

 

This expression represents the tangential expansion of a cylindrical shell with free edges under 

the action of hoop stresses. The general solution of equation (4.10) may be written in the form: 

 

  w = eβx(C1 cos βx +C2 sin βx)+ e
-βx
(C3 cos βx +C4 sin βx) + 

p
x
 a2

E t
 (4.13) 

 

where C1, C2, C3 and C4 are constants. 

1.3.3 Boundary conditions 

In most practical cases the wall thickness t is small in comparison with both the radius a and 

the height H of the tank. Therefore, the shell may be considered as infinitely long. Then, 

constants C1 and C2 are taken equal to zero, and this gives that: 

 

  w =  e-βx(C3 cos βx +C4 sin βx) + 
p

x
 a2

E t
 (4.14) 
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The constants C3 and C4 can now be obtained from the boundary conditions at the bottom of 

the tank. Assuming that the lower edge of the wall is built into an absolutely rigid foundation, 

the boundary conditions at x = 0, the deflection (w)x=0 = 0, then: 

 

 

 (w)
x = 0

 = C3 + 
p

x
 a2

E t
= 0 (4.15) 

 

and at x = 0, the rotation in tangential direction (χs)x=0 = 0, then: 

 

(χs)x = 0
 = (

dw

dx
)

x = 0

= [-βC3e-βx(cos βx + sin βx) + βC4e-βx(cos βx - sin βx) - 
p

o
a2

EtH
]

x = 0

 (4.16) 

 

 (χs)x = 0
 = β (C4- C3) - 

p
o
a2

EtH
= 0 (4.17) 

 

 χs = β e-βx [(C
4
 - C

3
) cos βx - (C

4
 + C

3
) sin βx]  – 

p
o
a2

EtH
 (4.18) 

 

From these equations it's obtained that: 

 

 C3= A1=  - 
p

o
a2

Et
                                               C4= A2 = 

p
o
a2

Et
(

1

βH
 - 1) (4.19) 

1.3.4 Internal forces 

The tangential force Nθ in the circumferential direction is given by: 

 

 Nθ = 
Et

a
e-βx(A1 cos βx +A2 sin βx) + p

x
a (4.20) 

 

The tangential force Ns in the meridional direction or in the direction of the cylindrical shell 

axis is to be taken zero. From the second derivative of equation (4.14) the tangential bending 

moments Ms in the meridional direction is given by: 

 

 Ms = D
d

2
w

dx2
 =  2β

2
D e-βx(A1 sin βx - A2 cos βx) (4.21) 

 

The tangential bending moments in the circumferential direction Mθ is: 

 

 Mθ = νD
d

2
w

dx2
 = νMs (4.22) 
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The transverse shearing force Qs of a section perpendicular to the axis of a cylindrical shell is 

given by: 

 

 Q
s
= -D

d
3
w

dx3
=  -2β

3
D e-βx [(A

2
 + A

1
) cos βx + (A

2
 - A

1
) sin βx] (4.23) 

1.4 Finite elements analysis of axi-symmetric shells of revolution 

1.4.1 Introduction 

Circular cylindrical shells analysis may be considered as an axi-symmetric shell structure 

problem. An axi-symmetric shell structure can be idealized by a series of conical frustum-

shaped elements as shown in Figure 1.7. This element was first suggested by Grafton and 

Strome (1963) and later its use was extended by Percy et al (1965). It may be noted that this 

single element has two ring nodes. Since both in-plan and out of plan displacements and forces 

have to be considered in shell structures, the displacement victor for each node contains axial 

and radial movements as well as rotation as shown in Figure 1.7 - b). Finite element analysis of 

axi-symmetric shells in the simplified approach of Grafton and Strome (1963) are presented by 

many authors. Some of them are Zienkiewicz/ Cheung (1967), Rockey et al (1975), Szilard 

(1986), and Melerski (2000). Szilard (1986) presented a more extensive analysis of axi-

symmetric shell structure with a computer program code. The following steps of the FE analysis 

of axi- symmetric shell structure depends on that of Zienkiewicz/ Cheung (1967) and Rockey et 

al (1975). 

1.4.2 Nodal victors of displacements and forces 

It is convenient to use cylindrical polar co-ordinates (r, z) and considering node (1) in Figure 

1.7. The nodal displacement victor is written as: 

 

 {δ1} = {

u̅1

w̅1

χ
s1

} (4.24) 

 

where: 

ū  Axial displacement in global co-ordinates, [-] 

w̅  Horizontal radial displacement in global co-ordinates, [-] 

χs  Meridional rotation, [Rad].  

  

The corresponding forces at node (1) are: 

 

 {F1} = {
Fz1

Fr1

M1

} (4.25) 

 

where: 

Fz  Axial force in global co-ordinates, [kN/m] 

Fr  Radial force in global co-ordinates, [kN/m] 

M  Meridional bending moment, [kN.m/m]. 
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The complete displacement and force vectors for the element, i.e. nodes (1) and (2), may be 

written as: 

 

 {δe} = {
{δ1}

{δ2}
} =

{
 
 

 
 

u̅1

w̅1

χ
s1

u̅2

w̅2

χ
s2}
 
 

 
 

 (4.26) 

 

 {Fe} = {
{F1}

{F2}
} =

{
 
 

 
 

Fz1

Fr1

M1

Fz2

Fr2

M2}
 
 

 
 

 (4.27) 

 

Thus each axi-symmetric shell element has six degrees of freedom and the complete element 

stiffness matrix [Ke] is of size 6×6. 

 

 {Fe} = [Ke]{δe} (4.28) 
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a) Internal forces for conical shell element 

 

b) Deformations at the nodes in the local (right) and global (left) coordinate systems 

 
c) Forces at the nodes in the local (right) and global (left) coordinate systems 

 Conical ring shell element 
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Ns+dNs 

Nθ 

Nθ+dNθ 

Ms 

Ms+dMs 

Mθ+dMθ 

Mθ 
 

Axis of 

Rotation 

r1 

r 

r2 

X, w 

S, u 

φ 

w 

u 

L 

χs 

Y, v 

1 

2 

Local coordinates system 

Z, ū 

R, w̅ 
X, w 

S, u 

1 

2 

u1 

u2 

w2 

w1 

(dw/ ds)1 

 

r1 

r2 

L 

φ 

ū1 

w̅1 

χs1 

ū2 
w̅2 

χs2 

Local coordinates system Global coordinates system 

(dw/ ds)2 

S 

X 

Ns1 

Ns2 

Fz1 

Fz2 

Fr1 

Fr2 

Ms1 

Ms1 

Ms2 
Ms2 

φ 

L 

R 

r1 

r2 

1 

2 

Z 
Local coordinates system Global coordinates system 
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1.4.3 Displacement function  

Because of the inclination of the element φ to the z-axis of the shell, it is more convenient to 

specify the element displacement function in terms of local element co-ordinates (r, s), where 

u is the in-plan (tangential) displacement and w is the displacement normal to the plan as shown 

in Figure 1.7. Since there are six degrees of freedom per element, six unknown coefficients 

have to be taken in the polynomials representing the permitted displacement pattern. Equation 

(4.29) gives a suitable set of relationships in which the in-plan displacement function u varies 

linearly in s and w varies as a cubic in s. 

 

 

u = α1+α2s

w = α3+α4s+α5s2+α6s3

dw

ds
= α4+2α5s+3α6s2

} (4.29) 

 

where: 

α1, 2, ., 6  Constants used in displacement function, [-]. 

u   Meridional displacement in local co-ordinates, [cm]. 

w  Normal displacement in local co-ordinates, [cm]. 

dw/ ds   Meridional rotation, [Rad]. 

 

It may be noted that the third equation for the rotation dw/ds is obtained by differentiating the 

second. Writing equation (4.29) in matrix form, the relationship in equation (4.30) between the 

element displacements u and w and the undetermined coefficient α is obtained. 

 

 

{
 
 

 
 

u

w

dw

ds}
 
 

 
 

=

[
 
 
 
 
 
1 s 0

0 0 1

0 0 0

     

0 0 0

s s2 s3

1 2s 3s2]
 
 
 
 
 

{
 
 

 
 

α1

α2

α3

α4

α5

α6}
 
 

 
 

 (4.30) 

 

Equation (4.30) may be written in matrix form as: 

 

 {δ(r, s)} = [f(r, s)]{α}  (4.31) 

 

where: 

f(r, s)  Matrix of displacement function. 

δ(r, s)  Nodal displacement vector in local co-ordinate system. 

{α}   Vector of displacement coefficients. 
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1.4.4 Displacement transformation from local to global co-ordinates 

The constants α1 to α6 can be evaluated by writing down the six simultaneous equations 

concerning the values of the nodal co-ordinates (r, s). Listing all six equations and substituting 

the node coordinate by element dimension L yields to a relationship for the constants {α}: 

 

 

{
 
 
 

 
 
 

u1

w1

(
dw

ds
)

1
u2

w2

(
dw

ds
)

2}
 
 
 

 
 
 

=

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 L 0 0 0 0

0 0 1 L L2 L3

0 0 0 1 2L 3L2]
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

α1

α2

α3

α4

α5

α6}
 
 
 

 
 
 

 (4.32) 

 

Inverting equation (4.32) gives: 

 

 

{
 
 
 
 
 

 
 
 
 
 

α1

α2

α3

α4

α5

α6}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

-1

L
0 0

1

L
0 0

0 1 0 0 0 0

0 0 1 0 0 0

0
-3

L2

-2

L
0

3

L2

-1

L

0
2

L3

1

L2
0

-2

L3

1

L2]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

u1

w1

(
dw

ds
)

1

u2

w2

(
dw

ds
)

2}
 
 
 
 
 

 
 
 
 
 

 (4.33) 

 

Therefore, using equations (4.30) and (4.33), one gets the displacements {u, w} at any point 

within the element are expressed in terms of the displacements at nodes 1and 2, as: 

 

 {
u

w
}= [

1-p 0 0

0 1-3p2+2p3 Lp-2Lp2+Lp3    
p 0 0

0 3p2-2p3 -Lp2+Lp3]

{
 
 
 

 
 
 

u1

w1

(
dw

ds
)

1
u2

w2

(
dw

ds
)

2}
 
 
 

 
 
 

 (4.34) 

 

where p = s/ L 

 

 

Referring to equation (4.34) it is seen that: 
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u1 = u̅1cos φ + w̅1sin φ

w1 = -u̅1sin φ + w̅1cos φ

(
dw

ds
)

1

= χ
s1 }

 

 
 (4.35) 

 

Writing these equations in matrix form the transformation matrix for node (1) is: 

 

 

{
 
 

 
 

u1

w1

(
dw

ds
)

1}
 
 

 
 

=

[
 
 
 
 
cosφ sinφ 0

-sinφ cosφ 0

0 0 1]
 
 
 
 

{
 
 

 
 

u̅1

w̅1

χ
s1}
 
 

 
 

=[T]{δ1} (4.36) 

 

For a single element, 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

u1

w1

(
dw

ds
)

1

u2

w2

(
dw

ds
)

2}
 
 
 
 
 
 

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
cosφ sinφ 0 0 0 0

-sinφ cosφ 0 0 0 0

0 0 1 0 0 0

0 0 0 cosφ sinφ 0

0 0 0 -sinφ cosφ 0

0 0 0 0 0 1]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

u̅1

w̅1

χ
s1

u̅2

w̅2

χ
s2}
 
 
 
 
 
 

 
 
 
 
 
 

 (4.37) 

 

Therefore, substituting from equation (4.37) in equation (4.34), equation (4.34) can be written 

in the form: 

 

 

{
u

w
}= [

(1-p)cosφ (1-p)sinφ 0

-(1-3p2+2p3)sinφ (1-3p2+2p3)cosφ L(p-2p2+p3)
 

 

pcosφ psinφ 0

-(3p2-2p3)sinφ (3p2-2p3)cosφ L(-p2+p3)
]

{
 
 

 
 

u̅1

w̅1

χ
s1

u̅2

w̅2

χ
s2}
 
 

 
 

 

(4.38) 
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1.4.5 Strain-displacement formulation 

The components of strain for the middle surface of a conical frustum axi-symmetric shell 

involve extensions and curvatures which are the two in-plan strains εs and εθ (hoop strain), and 

the corresponding curvatures κs and κθ. These are related to the displacements u and w by 

equation (4.39). 

 

 {ε(r, s)}=

{
 
 
 

 
 
 

εs

εθ

κs

κθ}
 
 
 

 
 
 

=

[
 
 
 
 
 
 
 
 
 

d

ds
0

sinφ

r

cosφ

r

0
-d

2

ds2

0
-sinφ

r

d

ds]
 
 
 
 
 
 
 
 
 

{

u

w

} (4.39) 

 

It should be noted that since p = s/ L, ds = L dp and
d

ds
=

1

L

d

dp
 

 

Substituting from equation (4.38) and performing the differentiations indicated in equation 

(4.39) gives the strain-nodal displacement matrix [B]: 

 

 {ε(r, s)}=[B]{δe} (4.40) 

 

in which: 

 

[B]=

[
 
 
 
 
 
 
 
 

-cosφ

L

-sinφ

L
0

(1-p)
sin 2φ

2r
-(1-3p2+2p3)

sin 2φ

2r
(1-p)

sin
2
φ

r
+(1-3p2+2p3)

cos2φ

r
(p-2p2+p3)

Lcosφ

r

-(-6+12p)
sinφ

L2
(-6+12p)

cosφ

L2
-(-4+6p)

1

L

(-6p+6p2)
sin

2
φ

rL
-(-6p+6p2)

sin 2φ

2rL
-(1-4p+3p2)

sinφ

r

 

 

 

   

cosφ

L

sinφ

L
0

p
sin 2φ

2r
-(3p2-2p3)

sin 2φ

2r
p

sin
2
φ

r
+(3p2-2p3)

cos2φ

r
(-p2+p3)

Lcosφ

r

(-6+12p)
sinφ

L2
-(-6+12p)

cosφ

L2
-(-2+6p)

1

L

-(-6p+6p2)
sin

2
φ

rL
(-6p+6p2)

sin 2φ

2rL
-(-2p+3p2)

sinφ

r ]
 
 
 
 
 
 
 
 

 

(4.41) 
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and the transposed matrix [B]T is: 

 

[B]T=

[
 
 
 
 
 
 
 
 
 
 
 
 
 -cosφ

L
(1-p)

sin 2φ

2r
-(1-3p2+2p3)

sin 2φ

2r
-(-6+12p)

sinφ

L2
(-6p+6p2)

sin
2
φ

rL

-sinφ

L
(1-p)

sin
2
φ

r
+(1-3p2+2p3)

cos2φ

r
(-6+12p)

cosφ

L2
-(-6p+6p2)

sin 2φ

2rL

0 (p-2p2+p3)
Lcosφ

r
-(-4+6p)

1

L
-(1-4p+3p2)

sinφ

r

cosφ

L
p

sin 2φ

2r
-(3p2-2p3)

sin 2φ

2r
(-6+12p)

sinφ

L2
-(-6p+6p2)

sin
2
φ

rL

sinφ

L
p

sin
2
φ

r
+(3p2-2p3)

cos2φ

r
-(-6+12p)

cosφ

L2
(-6p+6p2)

sin 2φ

2rL

0 (-p2+p3)
Lcosφ

r
-(-2+6p)

1

L
-(-2p+3p2)

sinφ

r ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.42) 

 

To calculate the matrix [B] for nodes 1 and 2, by substituting p = 0, r = r1 for node 1 and         p 

= 1, r = r2 for node 2: 

 

 

[B1] =

[
 
 
 
 
 
 
 
 
-cosφ

L

-sinφ

L
0

cosφ

L

sinφ

L
0

0
1

r1

0 0 0 0

6sinφ

L2

-6cosφ

L2

4

L

-6sinφ

L2

6cosφ

L2

2

L

0 0
-sinφ

r1

0 0 0
]
 
 
 
 
 
 
 
 

[B2] =

[
 
 
 
 
 
 
 
 

-cosφ

L

-sinφ

L
0

cosφ

L

sinφ

L
0

0 0 0 0
1

r2

0

-6sinφ

L2

6cosφ

L2

-2

L

-6sinφ

L2

-6cosφ

L2

-4

L

0 0 0 0 0
-sinφ

r2 ]
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (4.43) 
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1.4.6 Stress-displacement formulation 

In the case of shells, it is usual to work in terms of the stress resultants, which are the forces 

and moments per unit length. For this axi-symmetric shell element these resultants consists of 

Ns, Nθ which are the membrane forces per unit length, and Ms, Mθ, the moments per unit length, 

as shown in Figure 1.7. The stress-strain matrix, [D] is given by: 

 

 {σ(r, s)}=

{
 
 
 

 
 
 

Ns

Nθ

Ms

Mθ}
 
 
 

 
 
 

=
Et

(1-ν2)

[
 
 
 
 
 
 
 
1 ν 0 0

ν 1 0 0

0 0
t2

12

νt2

12

0 0
νt2

12

t2

12]
 
 
 
 
 
 
 

{
  
 

  
 

εs

εθ

κs

κθ}
  
 

  
 

 (4.44) 

 

The above equation may be written in compacted matrix form as {σ(r, s)} = [D] {ε(r, s)} 

 

where: 

E  Young's modulus of elasticity, [kN/m2] 

ν  Poisson's ratio, [-] 

t  Shell thickness, [m]  

 

Substituting from equations (4.40) and (4.41) into equation (4.44) yields the stresses in the 

element related to the nodal displacements: 

 

 {σ(r, s)} = [D][B]{δe}= [H]{δe} (4.45) 

 

The stress-displacement matrix [H] is obtained by pre-multiplying the matrix [B] given in   

equation (4.41) by the [D] matrix given in equation (4.44), where, for nodes 1 and 2 

 

 

 [D]8×8= [
D1 0

0 D2
] and [B]8×6= [

B1

B2
] (4.46) 
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[H] =
Et

(1-ν2)

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-cosφ

L

ν

r1

-
sinφ

L
0

cosφ

L

sinφ

L
0

-νcosφ

L

1

r1

-
νsinφ

L
0

νcosφ

L

νsinφ

L
0

t2sinφ

2L2

- t2cosφ

2L2
-

t2

3L
-

νt2sinφ

12r1

-t2sinφ

2L2

t2cosφ

2L2

-t2

6L

νt2sinφ

2L2

- νt2cosφ

2L2
-

νt2

3L
-

t2sinφ

12r1

- νt2sinφ

2L2

 νt2cosφ

2L2

 -νt2

6L

-cosφ

L
-
sinφ

L
0

cosφ

L

ν

r2

+
sinφ

L
0

-νcosφ

L
-

νsinφ

L
0

νcosφ

L

1

r2

+
νsinφ

L
0

- t2sinφ

2L2

 t2cosφ

2L2

t2

6L

t2sinφ

2L2

- t2cosφ

2L2

 t2

3L
-

νt2sinφ

12r2

- νt2sinφ

2L2

 νt2cosφ

2L2

 νt2

6L

νt2sinφ

2L2

- νt2cosφ

2L2

 νt2

3L
-
t2sinφ

12r2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.47) 

1.4.7 Stiffness matrix formulation  

The internal stresses {σ(r, s)} are now replaced by statically equivalent nodal loads {Fe} and 

hence the nodal loads are related to the nodal displacements {δe} thereby defining the required 

element stiffness matrix [Ke]. The principle of virtual work is used to determine the set of nodal 

loads that is statically equivalent to the internal stresses. The condition of equivalence may be 

expressed as follows: during any virtual displacement imposed on the element, the total external 

work done by the nodal loads must equal the total internal work done by the stresses. An 

arbitrary set of nodal displacements represented by the vector {δ*e} is selected where: 

 

 {δ*e} =

{
 
 

 
 {δ1

*e}

{δ2
*e}
.

.

{δn
*e}}
 
 

 
 

 (4.48) 

 

The external work done by the nodal loads Wext is given by: 

 

 Wext = {δ1
*e}{F1

e}+{δ1
*e}{F1

e}+……+{δn
*e}{Fn

e}= {δ*e}{Fe} (4.49) 

 

If the arbitrarily imposed displacements cause strains {ε(r, s)*} at a point within the element 

where the actual stress are {σ(r, s)}, then the internal work done per unit volume is given by: 

 

 Wint = {ε(r, s)*}T{σ(r, s)} (4.50) 

 

And the total internal work is obtained by integrating over the volume of the element, namely: 
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 ʃv Wint d(vol) = ʃv {ε(r, s)*}T{σ(r, s)} d(vol) (4.51) 

 

Now from equation (4.40) it is known that the strains set up at any point in the element are 

given in terms of the nodal displacements by {ε(r, s)} = [B]{δe}. Hence when nodal 

displacements {δ*e} are imposed, the corresponding strains may be written as {ε(r, s)*} = 

[B]{δ*e}.  

Furthermore, from equation (4.45) the actual stresses in the element are known to be related to 

the actual nodal displacements. Therefore, these expressions may be substituted into the virtual 

work equation for the internal work to obtain: 

 

 ʃv Wint d(vol) = ʃv [B]T{δ*e}[D][B]{δe} d(vol) (4.52) 

 

and 

 

 Wext = {δ*e}T{Fe} (4.53) 

 

The final operation is to equate internal and external work done during the system of virtual 

displacements {δ*e}. Since the basic principle of virtual displacements is valid for any system 

of applied displacements the selection of the system of virtual nodal displacements may be 

chosen at will. For present purposes, it is convenient to assume that the unit values of the nodal 

displacements are applied. Then equating the internal and external work gives: 

 

 {Fe} = [ʃv [B]T[D][B] d(vol)]{δe} (4.54) 

 

on comparing equation (4.54) with equation (4.55), which is stated below: 

 

 {Fe} = [Ke]{δe} (4.55) 

 

It is clear that the required element stiffness matrix [Ke] is given by the expression in the large 

square brackets in equation (4.56). Therefore: 

 

 [Ke] = ʃV [B]T[D][B] d(vol) (4.56) 

 

and, for a constant small element thickness t, the element stiffness matrix is obtained by 

integrating over the area of the element, namely: 

 

 [Ke] = ʃA [B]T[D][B] dA (4.57) 

where 

 

 dA = 2π r(s) ds = 2πL r(p) dp (4.58) 

 

 r(s) = (r2 – r1/ L) s + r1 (4.59) 

 

 r(p) = (r2 – r1) p + r1 (4.60) 

with p varying from 0 to 1. Thus, the stiffness matrix becomes: 
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 [Ke]= 2πL∫[B]T[D]

1

0

[B]((r2 – r1) p + r1)dp (4.61) 

 

 [Ke]= 2πL∫[B]T[H]

1

0

((r2 – r1) p + r1)dp (4.62) 

 

where for nodes 1 and 2: 

 

 [B]T
6×8

= [
B1

B2
]

T

, [D]8×8= [
D1 0

0 D2
] , [B]8×6= [

B1

B2
] and [H]8×6= [

H1

H2
]  (4.63) 

 

According to Szilard, Ziesing and Pickhardt (1986), the elements of the (transformed) stiffness 

matrix for the general case of any angle φ is: 

 

 [Ke]=

[
 
 
 
 
 
 
K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26

K33 K34 K35 K36

K44 K45 K46

Symm. K55 K56

K66]
 
 
 
 
 
 

 (4.64) 

 

where: 

 

K11=
π

L
(
12

t2
D(r1+r2)cos2φ+

36

L2
D(r1+r2)sin

2
φ)  = K14 

 

K12=
π

L
cosφ (

12

t2
D(r1+r2)sinφ-

12

t2
DLν-

36

L2
D(r1+r2)sinφ)  

 

K13= -
6π

L2
sinφ(2D(2r1+r2)-DLνsinφ)  

 

K15= -
π

L
cosφ (

12

t2
D(r1+r2)sinφ+

12

t2
DLν-

36

L2
D(r1+r2)sinφ) 

 

K16= -
6π

L2
sinφ(2D(r1+2r2)+DLνsinφ) 

 

K22=
π

L
(

12

t2
D(r1+r2)sin

2
φ-

24

t2
DLνsinφ+

12L2

r1t2
D+

36

L2
D(r1+r2)cos2φ) 
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K23=
6π

L2
cosφ(2D(2r1+r2)-DLνsinφ); K24= -K12 

 

K25= -
π

L
(
12

t2
D(r1+r2)sin

2
φ+

36

L2
D(r1+r2)cos2φ)  

 

K26= 
6π

L2
cosφ(2D(r1+2r2)+DLνsinφ) 

 

K33= 
4π

L
(D(4r1+r2)-2DLνsinφ+D

L2

4r1

sin
2
φ) ; K34= -K15; K35= -K23 

 

K36= 
2π

L
(4D(r1+r2)); K44= K11; K45= -K15; K46= -K16 

 

K55= 
π

L
(

12

t2
D(r1+r2)sin

2
φ+

24

t2
DLνsinφ+

12L2

r2t2
D+

36

L2
D(r1+r2)cos2φ) 

 

K56= -
6π

L2
cosφ(2D(r1+2r2)+DLνsinφ) 

 

K66= 
π

L
(4D(r1+4r2)+8DLνsinφ+D

L2

r2

sin
2
φ) 

 

Where D is the flexural rigidity as shown in Eq. (4.3) 

1.4.8 Calculation process with axially symmetrical loading 

The calculation of axially symmetrical loaded shells of revolution is carried out in the usual 

way by the finite element method. The structure is converted into a quasi-one-dimensional 

replacement system using conical ring shell elements. The geometry of this replacement system 

is defined in a global reference system Z, R by the cylindrical coordinates of the nodes (zi, ri). 

The Z-axis is selected as the axis of rotation. The origin of the coordinate system is usually set 

in the vertex of the axi-symmetric shell. 

Next, the authorized global nodes deformations are numbered. The overall stiffness matrix of 

the structure K is carried out by superposition of the individual values of the stiffness indices. 

 

 Kij = ∑ij k'ij (4.65) 

 

After assembling the overall stiffness matrix, the given boundary conditions should be 

incorporated. The outer surface loading must be converted into a resultant force acting on the 

nodes in the vertical or horizontal direction.  
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1.4.9 Simulation of circular plate 

Equations (4.43), (4.64) and (4.47) present a conical element with any tangential angle φ. For 

circular cylindrical shells φ = 0 [°], while for circular plates φ = 90 [°]. 

 

Shells are often closed at the ends like conical shell elements or circular plates. Both cases can 

be treated with appropriate limits of the element dimensions. At cone vertex (Figure 1.8- a)) r1 

or r2 may not be exactly zero, because the values of the matrix elements in equation (4.65) 

become deteriorated, as r1 or r2 are divisors. To avoid unauthorized division by zero, ELPLA 

changes internally the entered zero value with a radius equal to 10-3 [m]. Circular plates have 

to be analyzed also with a fictional small overall height (for example, 10-3 [m]) (Figure 1.8 b)). 

Taking these limitations, wall of the circular cylindrical tank with circular base plate are 

analyzed using the same shell elements. 

 

 
a) Approximation of the cone vertex 

 

 
b) Approximation of a circular plate 

 

 Boundary values for element dimensions 

 

 

 

 

r1 ≈ 0 

r2  

r1  

r2 ≈ 0 

r1 ≈ 0 

φ ≈ 90 

z 
≈

 0
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1.4.10 Simulation of the tank wall and base using thin shell element 

The analysis of the tanks used in this book are carried out numerically by ELPLA, where the 

circular cylindrical wall and the base were simulated with a thin shell element using finite 

element method. 

Figure 1.9-a shows the internal forces acting on a cylindrical shell element which simulates the 

wall of the tank, while Figure 1.9-b shows the internal forces acting on a circular flat shell 

element which simulates the base of the tank. 

Considering the two shell elements, the internal forces acting on these elements are the 

tangential normal force (Nθ), the meridional normal force (Ns), the tangential bending moment 

(Mθ), the meridional bending moment (Ms) and the transverse shearing force component (Qs). 

Due to the axial symmetry, the transverse shearing force component (Qθ), the tangential 

shearing force components (Nθs, Nsθ) and torsional moments (Msθ, Mθs) will vanish.  
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a) Internal forces on a wall element 

 
b) Internal forces on a circular flat shell element 

 Tank simulation using thin shell element 

r  

dH  
Nθ  

Nθ  

Mθ  

Mθ  

Ms+dMs  

Qs+dQs 

Ns+dNs 

Ms  
Qs  

Ns  

dθ  

tw  

tw  

r 1 r 2 

dθ  dr  

Nθ  

Mθ  

Mθ  

Nθ  

Ms  

Ns  

Qs  

Ns+dNs  

Ms+dMs  

Qs+dQs  
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1.5 Analysis of water tanks under static loading 

1.5.1 Introduction 

According to the three standard soil models available in ELPLA (simple assumption model - 

Winkler's model - Continuum model), nine numerical calculation methods are considered to 

analyze the tank considering soil structure interaction as shown in Table 1.2. 

Table 1.2 Numerical calculation methods  

Method No. Method 
 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

 

6 

 

 

 

 

7 

 

 

 

 

8 

 

 

 

9 

 
Linear contact pressure 

(Simple assumption model) 

 

Constant modulus of subgrade reaction 

(Winkler's model) 

 

Variable modulus of subgrade reaction 

(Winkler's model) 

 

Modification of modulus of subgrade reaction by iteration 

(Winkler's model/ Continuum model) 

 

Modulus of compressibility method for elastic raft on half-space 

soil medium (Isotropic elastic half-space soil medium - 

Continuum model) 

 

Modulus of compressibility method for elastic base on layered 

soil medium  

(Solving system of linear equations by iteration) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for elastic base on layered 

soil medium  

(Solving system of linear equations by elimination) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for rigid base on layered soil 

medium  

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for flexible base on layered 

soil medium 

(Layered soil medium - Continuum model) 
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The Finite elements-method is used to analyze the tank wall and base for all numerical 

calculation methods except Continuum model for rigid and flexible bases, which did not obey 

the elasticity rules. In the Finite elements-analysis, the tank base is represented by annular shell 

elements according to the dimensional nature of the base. 

 

To formulate the equations of the numerical calculation methods, both the base and the contact 

area of the supporting medium are divided into annular elements as shown in Figure 1.10. 

Compatibility between the base and the soil medium in vertical direction is considered for all 

methods except Simple assumption model. 

 

The fundamental formulation of equilibrium equation for the tank can be described in general 

form through the following equation: 

 

 [kp]{δ} = {F} (1.66) 

 

where {F} is the vector of forces acting on the tank, [kp] is the stiffness matrix of the tank and 

{δ} is the deformation vector. 

 

In principle for all calculation methods, the acting forces are known and equal to the applied 

forces on the tank wall and base, while the reaction forces (contact forces) are required to be 

found according to each soil model. 

 

It is assumed that the contact pressure qi can be replaced by equivalent force Qi at the various 

nodal rings. The contact pressure around the nodal ring i is given by qi = Qi/ Ai over an annular 

area Ai corresponding to the nodal contact i. According to subsoil models (Simple assumption 

model - Winkler's model - Continuum model), six numerical calculation methods are considered 

to find the contact pressures qi, and hence to analyze the tank. The next pages describe the 

interaction between the tank base and subsoil medium in these methods. 
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 Action between tank base and soil 

 

1.5.2 Simple assumption model 

This method is the simplest one for determination of the contact pressure distribution under the 

tank base. The assumption of this method is that there is no compatibility between the tank base 

deflection and the soil settlement. In the method, it is assumed that the contact pressures are 

distributed uniformly on the bottom of the base (statically determined) as shown in Figure 1.11, 

in which the resultant of soil reactions coincides with the resultant of applied loads. 

 

Soil nodal element 

qi 

qi 

Tank mesh 
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 Contact pressure distribution for Simple assumption model 

For a base without eccentricity the contact pressure qi will be uniform under the base and is 

given by: 

 

 q
i
=

N

Ab
 (1.67) 

 

where N is the resultant force on the tank and Ab is the area of the tank base. 

1.5.2.1 System of equations of Simple assumption model 

The tank can be analyzed by calculating the soil reactions at the different nodal rings of the 

Finite elements-mesh. This is done by obtaining the contact pressure qi from equation (1.67). 

Then, the contact force Qi at ring i is given by: 

 

 Qi = qi (πri2
2- πri1

2) (1.68) 

Contact pressure q [kN/ m
2
] 

qi 

qi 

r i 1 

Tank base in plan view 

r i 2 
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where ri1 and ri2 are the outer and inner radii of the annular element i, [m]. 

 

Considering the entire base, the base will deflect under the action of the total external forces 

{F} due to known applied loads {P} and the known soil reactions {Q}, where: 

 

 {F} = {P} - {Q}    (1.69) 

     

The equilibrium of the system is expressed by the following matrix equation: 

 

 [kp]{δ} = {P} - {Q} (1.70) 

1.5.2.2 Equation solver of linear contact pressure method 

As the stiffness matrix [kp] in equation (1.66) is a diagonal matrix, the system of linear equations 

in equation (1.70) is solved by Banded coefficients-technique. The unknown variables are the 

nodal displacements wi and the nodal rotations χi. 

1.5.3 Winkler's model 

The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade 

reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil 

model is represented by elastic springs as shown in Figure 1.12. The settlement si of the soil 

medium at any point i on the surface is directly proportional to the contact pressure qi at that 

point and is mathematically expressed as: 

 

 qi = ksi si (1.71) 

 

The ratio between the contact pressure qi [kN/ m2] and the corresponding settlement si [m] is 

termed the modulus of subgrade reaction ksi [kN/ m3]. 
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 Winkler's model 

 

Contact pressure q [kN/ m
2
] qi 

qi 
ri 1 

Tank deformed shape si 

Modulus of subgrade reaction 

ks [kN/ m
3
] 

ks i 

Tank base in plan view 

ri 2 
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1.5.3.1 System of equations of Winkler's model 

For a nodal ring i on the Finite elements-mesh, the contact force Qi is given by: 

 

 Qi = (πri2
2- πri1

2) ksi si  (1.72) 

 

It should be noticed that ksi is the modulus of subgrade reaction at nodal ring i. It may be 

constant for the entire base (Constant modulus of subgrade reaction) or variable from a nodal 

ring to another (Variable modulus of subgrade reaction). 

 

Considering the entire base, equation (1.72) can be rewritten in matrix form as: 

 

 {Q} = [ks]{s} (1.73) 

1.5.3.2 Complete stiffness formulation of Winkler's model 

The base will deflect under the action of the total external forces {F} due to known applied 

loads {P} and the unknown soil reactions {Q}, where: 

 

 {F} = {P} - {Q} (1.74) 

 

The equilibrium of the tank-soil system is expressed by the following matrix equation: 

 

 [kp]{δ} = {P} - {Q} (1.75) 

 

Considering the compatibility of deformation between the base and the soil medium, where the 

soil settlement si equal to the base deflection wi, equation (1.73) for Winkler’s model can be 

substituted into equation (1.75) as: 

 

 [[kp]+[ks]]{δ} = {P} (1.76) 

 

Equation (1.76) shows that the stiffness matrix of the whole tank-base-soil system is the sum 

of the tank and the soil stiffness matrices, [kp]+[ks]. 

1.5.3.3 Equation solver of Winkler's model 

It should be noticed that the soil stiffness matrix [ks] is a purely diagonal matrix for Winkler’s 

model. Therefore, the total stiffness matrix for the tank and the soil is a banded matrix. Then, 

the system of linear equation (1.76) is solved by Banded coefficients-technique. Since the total 

stiffness matrix is a banded matrix, the Equation solver equation (1.75) takes short computation 

time by applying this method. 

 

The unknown variables in equation (1.76) are the nodal displacements wi (wi = si) and the nodal 

rotations χi. After solving the system of linear equations (Eq. 4.76), substituting the obtained 

settlements si in equation (1.73), gives the unknown contact forces Qi. 
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1.5.4 Winkler’s/ Continuum model 

This method was proposed by Ahrens/ Winselmann (1984), which based on the soil, is 

represented by variable moduli of subgrade reactions similar to the Continuum model. In the 

method the base and soil medium are treated separately, the results of one analysis forming the 

boundary conditions for the subsequent analysis as part of an iterative process. By modifying 

the variable moduli through the iterative process, the compatibility between the soil and base 

interface is reached. The obtained results here are similar to those by Continuum model. The 

method is not only used for analysis of the foundations by Continuum model but also by 

modulus of subgrade reaction with variable moduli. The first iterative cycle gives an analysis 

for modulus of subgrade reaction with variable moduli. The results at any intermediate iteration 

cycle may be considered as acceptable results, which in fact lie between Winkler’s model with 

variable moduli and Continuum model. See Figure 1.13. 

 

The iteration process of this method can be described as follows: 

 

i) First, uniform distribution of contact pressure qo on the bottom of the foundation is assumed 

as: 

 

 q
o
=

N

Ab
 (1.77) 

 

ii) For a set of nodal rings of Finite elements-mesh, the soil settlement si at nodal ring i due to 

contact forces in manner described later for Continuum model is obtained from: 

 

 si
(j) =∑ ci, k Qk

n

i =1

 (1.78) 

 

iii) The spring stiffness ki from the soil settlement si and contact force Qi is computed from: 

 

 ki
(j)

=
Q

i

(j)

si
(j)

 (1.79) 

 

iv) The foundation is analyzed as plate on springs, the spring coefficients are used to generate 

the soil stiffness matrix [ks]. This matrix will be a diagonal matrix. Therefore, adding the soil 

stiffness matrix [ks] to the base stiffness matrix [kp] is easy. Then, the overall matrix for wall-

base-soil system becomes a banded matrix. The entire system equation is expressed as: 

 

 [[kp]+[ks]]{δ} = {P} (1.80) 

 

v) A set of nodal displacements {δ} is obtained by solving the system equation (1.80) using the 

Banded coefficients-technique. 
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 Winkler/ Continuum model 

 

 

Contact pressure q [kN/ m
2
] 

qi 

qi 
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Tank deformed shape si 

Modulus of subgrade reaction 

ks [kN/ m
3
] 
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vi) The soil settlements si are compared with the corresponding base deflections wi, which were 

computed from the system equation (1.80): 

 

 η = || si -  wi || (1.81) 

 

vii) If the accuracy does not reach to a specified tolerance η a new set of contact forces are 

obtained using: 

 

 Qi 
(j+1) = ki

(j) wi
(j) (1.82) 

 

The steps ii to vii are repeated until the accuracy reaches to a specified tolerance η, which means 

that sufficient compatibility between the base deflections wi and the soil settlements si is reached 

in the base-soil interface. Figure 1.14 shows the iteration cycle of the iteration process. 
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 Iteration cycle of the iteration process 

Convergence reached 

wi
(j) ≈ si

(j) 

Iteration end 

Yes 

No 

J = Iterative cycle No. 

i = Node No. 

New contact pressure 

Qi
(j+1) = ki

(j) wi
(j) 

 

Actual contact pressure qi 

System with springs ki
(j) 

Uniform contact pressure q(o) = N/Af 

 Soil settlement 
si

(j) = ∑ ci,k Qk
(j) 

 

System with springs 

ki
(j) = Qi

(j)/si
(j) 

 

Base deflection w  

 [[kp] + [ks]] {δ} = {P} 
 

Uniform contact pressure 

Compare s with w 

η = | si - wi | 

Base deflection wi
(j) 

 

Soil settlement si
(j) 
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1.5.5 Continuum model for elastic base 

Continuum model was first proposed by Ohde (1942), which based on the settlement will occur 

not only under the loaded area but also outside (Figure 1.15). Otherwise, the settlement at any 

nodal point is affected by the forces at all the other nodal points. 

 

 

 
 Influence line of elastic displacement in Continuum model 

Continuum model assumes continuum behavior of the soil, where the soil is represented as 

isotropic elastic half-space medium or layered medium. Consequently, this model overcomes 

the assumption of Winkler’s model, which does not take into account the interaction between 

the different points of the soil medium. Representation of soil as a continuum medium is more 

accurate as it realizes the interaction among the different points of the continuum medium. 

However, it needs mathematical analysis that is more complex. The earliest application for rafts 

on continuum medium using Finite elements-method related to Cheung/ Zienkiewicz (1965). 

These authors considered the soil as isotropic elastic half-space medium. 

  

The isotropic elastic half-space soil medium bases on Boussinesq's solution (1885). The 

medium in this solution is semi-infinite homogeneous isotropic linear elastic solid subjected to 

a concentrated force. The force acts normal to the plane boundary at the surface. This basic 

solution can be used to obtain the surface settlement of isotropic elastic half-space soil medium 

subjected to a concentrated load acting on the ground surface. 

  

Continuum model for elastic base, which is described here, considers the interaction between 

the base and soil. It represents the soil as layered soil medium (Figure 1.16). 

 

  

si, i 
i 

qi 

sk, i 

k 
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 Continuum (elastic base) model 
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1.5.5.1 Formulation of flexibility matrix of soil 

The settlement si, k of the nodal ring i, due to contact force Qk on nodal ring k, Figure 1.17, can 

be expressed by: 

 

 si, k = ci, k Qk (1.83) 

 

The ratio between the settlement si, k of nodal ring i and the contact force Qk at a nodal ring k is 

termed the flexibility coefficient ci, k [m/ kN]. It can be recognized as the settlement of a nodal 

ring i due to a unit load at a nodal ring k. 

 

 
 Settlement si, k of nodal ring i due to contact force Qk at nodal ring k 

1.5.5.2 Assembling of the flexibility matrix 

To find the settlement si at nodal ring i, equation (1.83) is applied for that nodal ring i, while 

equation (1.84) is applied for the other remaining nodal rings considering contact forces over 

nodal rings. For a set of nodal rings of Finite elements-mesh, the settlement at nodal ring i is 

obtained from: 

 

 si = si, 1 + si, 2 + si, 3 + ... + si, n =  ci, 1 Q1 + ci, 2 Q2 + ci, 3 Q3 + ... + ci, n Qn (1.84) 

 

 

 

 

 

Nodal ring k 

Qk 

Qk 

Nodal ring i 

Nodal ring k Nodal ring i 
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Equation (1.85) in series form is: 

 

 si =∑ ci, k Qk

n

k =1

 (1.85) 

 

Equation (1.85) for the entire foundation in matrix form is: 

 

 

{
 
 
 

 
 
 

s1

s2

s3

⋮

sn}
 
 
 

 
 
 

=

[
 
 
 
 
 
 
 
c1, 1 c1, 2 c1, 3 … c1, n

c2, 1 c2, 2 c2, 3 … c2, n

c3, 1 c3, 2 c3, 3 … c3, n

⋮ ⋮ ⋮ ⋱ ⋮

cn, 1 cn, 2 cn, 3 … cn, n]
 
 
 
 
 
 
 

{
 
 
 

 
 
 

 Q
1

 Q
2

 Q
3

⋮

 Q
n}
 
 
 

 
 
 

 (1.86) 

 

Equation (1.86) is simplified to: 

 

 {s} = [c]{Q} (1.87) 

 

To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force 

and the resulting settlements in all remaining nodal rings and in the loaded rings are calculated. 

Inverting the flexibility matrix [c], gives the [n × n] stiffness matrix of the soil [ks] 

corresponding to the contact forces at the n nodal rings such that: 

 

 {Q} = [ks]{s} (1.88) 

1.5.5.3 Complete stiffness formulation for isotropic elastic half-space soil medium 

The base will deflect under the action of the total external forces {F} due to known applied 

loads {P} and the unknown soil reactions {Q}, where: 

 

 {F} = {P} - {Q} (1.89) 

 

The equilibrium of the wall-base-soil system is expressed by the following matrix equation: 

 

 [kp]{δ} = {P} - {Q} (1.90) 

 

 

Considering the compatibility of deformation between the base and the soil medium, where the 

soil settlement si is equal to the base deflection wi, equation (1.88) for Continuum model can be 

substituted into equation (1.90) as: 

 

 [[kp]+[ks]]{δ} = {P} (1.91) 
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Equation (1.91) shows that the stiffness matrix of the whole wall-base-soil system is the sum 

of the wall-base and the soil stiffness matrices, [kp] + [ks].  

It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the 

degrees of freedom in equation (1.88) differ from that in equation (1.90). To overcome this 

problem, equation (1.88) can be treated by extending the row and column of matrix [ks] in the 

same manner as the matrix [kp]. Consequently, the operation of matrix equations can then be 

accepted. 

1.5.5.4 Equation solver for isotropic elastic half-space soil medium 

It should be noticed that the matrix [ks] is full matrix. Therefore, the total stiffness matrix for 

the raft and the soil is also full matrix. 

  

The system of linear equations is solved by Gauss elimination-technique. Since the total 

stiffness matrix is a full matrix, the equation solver equation (1.91) takes long computation time 

by applying this method. The unknown variables in equation (1.91) are the nodal displacements 

wi (wi = si) and the nodal rotations χi. After solving the system of linear equation (1.91), 

substituting the obtained settlements si in equation (1.88), gives the unknown contact forces Qi. 

1.5.6 Continuum model for rigid base 

In many practice cases, treating the tank as completely rigid is convenient. In this case, for a 

tank with symmetrical shape and loading, the unknowns of the interaction problem, Figure 1.18, 

are: 

- n contact pressures qi. 

- Rigid body translation of the raft wo at the centroid. 

1.5.6.1 Formulation of the rigid raft 

To describe the method, consider the base shown Figure 1.18. The contact pressure qi at a nodal 

ring i under the base is replaced by equivalent contact force Qi. For a set of nodal rings of 

elements-mesh, the settlement at a nodal ring i is obtained from: 

 

 si =∑ ci, k Qk

n

k =1

 (1.92) 

 

Considering the entire base, equation (1.92) can be rewritten in matrix form as: 

 

 {s} = [c]{Q} (1.93) 

 

Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to 

the contact forces at the n nodal rings such that: 

 

 {Q} = [ks]{s} (1.94) 

 

For a tank with symmetrical load and shape, the settlement will be uniform (si = wo) and the 

tank will not rotate (χo = 0). Therefore, the unknowns of the problem reduce to n contact 

pressures qi and rigid body translation wo. 
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 Continuum (rigid base) model 
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1.5.6.2 Derivation of uniform settlement wo 

The derivation of the uniform settlement for the rigid base can be carried out by equating the 

settlement si by uniform settlement wo for all nodal rings in equation (1.94) In this case, the 

contact forces can be rewritten as a function in the terms ki, j of the soil stiffness matrix as 

follows: 

 

 

 Q
1
 = k1, 1 wo + k1, 2 wo + k1, 3 wo + … + k1, n wo

 Q
2
 = k2, 1 wo + k2, 2 wo + k2, 3 wo + … + k2, n wo

 Q
3
 = k3, 1 wo + k3, 2 wo + k3, 3 wo + … + k3, n wo

⋮

 Q
n
 = kn, 1 wo + kn, 2 wo + kn, 3 wo + … + kn, n wo}

 
 
 

 
 
 

 (1.95) 

 

Carrying out the summation of the all contact forces: 

 

 ∑Q
i 

n

i =1

 = wo∑∑ ki, j

n

j =1

n

i =1

 (1.96) 

 

The rigid body translation wo, which equals to the settlement si at all nodal rings, is obtained 

from: 

 

 
 wo = 

∑ Q
i 

n

i =1

∑ ∑ ki, j

n

j =1

n

i =1

 = 
N

∑ ∑ ki, j

n

j =1

n

i =1

 
(1.97) 

 

Substituting this value of wo in equation (1.94) gives the n unknown contact forces Qi. 

 

The summation of terms ki, j (= N/ wo) may be used to determine the modulus of subgrade 

reaction ks.  

1.5.7 Continuum model for flexible base 

If the tank base is perfectly flexible, then the contact stress will be equal to the gravity stress 

exerted by the base on the underlying soil. See Figure 1.19.  

 

For the set of nodal rings of the base, the soil settlements are: 

 

 {s} = [c]{Q} (1.98) 
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 Continuum (flexible base) model 
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