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English Abstract

Barrette is a vital solution to minimize soil displacement problems of massive
structures due to its high axial and lateral load capacities. The traditional
methods for analyzing barrettes are mainly modeling the barrette and
surrounding soil using three-dimensional finite elements. These methods
require a huge-computational effort. In this thesis, a numerical hybrid
technique is developed for analyzing laterally loaded barrettes and barrette
groups. In this technique, the flexibility coefficient is used to determine the
soil deformation based on Mindlin’s solution considering the full interaction
between barrettes and surrounding soil. Also, it takes into consideration the
group interaction of every single barrette on the group of barrettes. On the
other hand, the barrette in the vertical direction is discretized to one-
dimensional finite elements. The soil stiffness along the barrette surface is
reduced by the Composed Coefficient Technique (CCT) to be one-dimensional
along the barrette vertical axis having variable displacements along the
barrette height. This technique enables adding the soil stiffness to the barrette
stiffness matrix generating the full stiffness matrix of the single
barrettes/barrette groups to be solved. As a result, the number of equations is
reduced. Besides the soil nonlinearity using the hyperbolic function is
considered. A series of validations are carried out to verify the hybrid
technique. In addition, a comparative study of laterally loaded single barrettes
in a real-subsoil is carried out, in which east Port-Said soil properties are
considered. Also, parametric studies are carried out to investigate the behavior
of laterally loaded barrette/barrette groups. The study presents guidelines for
analyzing laterally loaded single barrettes and barrette groups.

Keywords | Soil structure interaction, Deep foundations, Rectangular piles, Barrettes,
Single barrettes, barrette groups, lateral load, Composed Coefficient
Technique.
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ABSTRACT

Barrette is a vital solution to minimize soil displacement problems of massive
structures due to its high axial and lateral load capacities. The traditional methods
for analyzing barrettes are mainly modeling the barrette and surrounding soil
using three-dimensional finite elements. These methods require a huge-
computational effort. In this thesis, a numerical hybrid technique is developed
for analyzing laterally loaded barrettes and barrette groups. In this technique, the
flexibility coefficient is used to determine the soil deformation based
on Mindlin’s solution considering the full interaction between barrettes and
surrounding soil. Also, it takes into consideration the group interaction of every
single barrette on the group of barrettes. On the other hand, the barrette in the
vertical direction is discretized to one-dimensional finite elements. The soil
stiffness along the barrette surface is reduced by the Composed Coefficient
Technique (CCT) to be one-dimensional along the barrette vertical axis having
variable displacements along the barrette height. This technique enables adding
the soil stiffness to the barrette stiffness matrix generating the full stiffness matrix
of the single barrettes/barrette groups to be solved. As a result, the number of
equations is reduced. Besides the soil nonlinearity using the hyperbolic function
is considered. A series of validations are carried out to verify the hybrid technique.
In addition, a comparative study of laterally loaded single barrettes in a real-
subsoil is carried out, in which east Port-Said soil properties are considered. Also,
parametric studies are carried out to investigate the behavior of laterally loaded
barrette/barrette groups. The study presents guidelines for analyzing laterally
loaded single barrettes and barrette groups.
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CHAPTER 1
1 INTRODUCTION

1.1 General

The civilization development, especially that has taken place in Egypt in recent
times, such as the tallest tower in Africa with a height of 345 m, Towers of the
financial and business district, New EI Alamein Towers, and others. These mega
structures cause extreme heavy axial and lateral loads, which need a special
system of foundations to transmit these loads into the surrounding soils. Many
structural problems for these structures arise mainly from large soil
displacements. Barrette foundation is a major solution for avoiding large soil
displacement problems. It reduces soil displacements, especially if the underlying
layers contain weak soil, because of it is large dimensions compared to piles.

Several barrettes research appeared at the end of the last century. It became more
frequently used at the beginning of the 21st century, especially in the past ten
years. Early researches were based on field results of loading tests and using the
three-dimensional finite element (3D-FE) to analyze it. Few researches are
available for these loading tests due to the difficulty of conducting barrettes
loading tests because of their high vertical and lateral load capacities. These
capacities reached a world record test load of 363 MN. Different methods of
analyzing barrettes appeared based on traditional methods of analyzing piles.
These methods are mainly modeling the barrette and surrounding soil using 3D-
FE, which requires large-computational effort. So, large-systems of equations
need to be solved. Similar methods for analyzing piles are used as a less
complicated problem than that of the barrettes. Usually, Piles are circular with a
relatively smaller cross-sectional area, while barrettes are rectangular with a large
cross-sectional area. Therefore, piles are treated as a beam element subjected to
point loads on its nodes, while barrettes are treated as block members. Although
these methods are used for analyzing barrettes by treating barrettes as piles with
equivalent cross-section area, Its disadvantage is that it ignores the three-
dimensional natural geometry of the barrette and soil.

The Composed Coefficient Technique (CCT) was presented by EI Gendy (2007)
[17] and Russo (1998) [51] to reduce the size of the soil stiffness matrix for piled
rafts. This technique was developed by the author (2016) [18] for analyzing
vertically-loaded single barrettes. In this thesis, the CCT is extended to analyze
laterally loaded single barrettes and barrette groups. Mindlin’s solution (1936)
[40] is used to determine the soil deformation, considering the full three-
dimensional interactions between the barrette/barrette groups and surrounding
soil. The soil stiffness matrix is determined considering the group interaction
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between barrettes in the barrette groups. Subsequently, The CCT is used to
reduce the soil stiffness to be one-dimensional. On the other hand, the barrette is
divided into vertical elements to determine the barrette stiffness by one-
dimensional finite elements. The soil stiffness is added to the barrette stiffness
generating the full stiffness matrix of barrette/barrette groups to be solved. As a
result, this hybrid technique reduces the number of equations to be solved. Also,
it enables applying the nonlinear response in of the barrettes by a hyperbolic
function. Figure 1.1 shows the barrette construction sequence.

Figure 1.1 Barrette construction sequence, [67].

1.2 Aims of the Study

Analyzing laterally loaded barrettes is a complex problem. It is related to the
difficulty of modeling the problem with the real conditions of loading and
surrounding subsoil. Pile foundations are used as traditional deep foundation
systems to overcome displacement problems. On the other hand, barrette
foundations are not a preferred option based on cost considerations. In the present
study, barrette foundations are studied as an alternative to overcome lateral
displacement problems. The main aims of the study are:

1- To develop a practical method for analyzing laterally loaded barrettes.
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2- Toexamine the developed method for analyzing laterally loaded barrettes
considering various soil conditions and parameters.

3- To assess the appropriateness of laterally loaded barrettes choice as a
foundation system for heavy-loaded structures.

4- To provide the geotechnical engineer with guidelines and
recommendations for the analysis of laterally loaded single barrettes
constructed at the east Port-Said area.

1.3 Objectives of the Study
To achieve the above aims. The following objectives have been set:

1- Adopting a suitable numerical model for analyzing laterally loaded single
barrettes and barrette groups considering barrette-soil interaction.

2- Collecting the available subsoil information to get the soil parameters,
which can be used in the proposed numerical model.

3- Performing a sensitivity study to assess the importance of the main
parameters: barrette width, barrette length, barrette height, the effective
barrette height, and spacing between barrettes.

1.4 Significance of the Study

Present a developed program for analyzing laterally loaded single
barrettes/barrette groups with both linear and nonlinear subsoil models. Present
guidelines to be a basis for designing laterally loaded barrette foundations in the
east Port-Said area. These are similar to the soil formation of London, Frankfurt,
Rome, Hong kong, and Dammam.

1.5 Organization of Thesis
The thesis consists of six chapters, as follows:

Chapter (1): Introduction.

This chapter introduces the research topic and illustrates the organization of this
thesis. Also, presented aims, objectives, and significance of the study.

Chapter (2): Literature Review.

Reviews of the available literature related to the scope of the thesis are presented
in this chapter.

Chapter (3): Numerical Model.

This chapter presents the developed mathematical models using flexibility
coefficient and finite element methods based on CCT for analyzing laterally
loaded single barrettes and barrette groups.
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Chapter (4): Validation of the program.

This chapter presents verification examples to test the accuracy of the program
used in the analysis. Besides the linearly and nonlinearly results from analyzing
laterally loaded barrettes embedded in multi-layered soil are compared with those
in the available literature, the verification by comparing results from the present
technique with two different 3D-FE models available in well-known software.

Chapter (5): Analysis of Barrettes.

This chapter presents a comparative study of laterally loaded single barrettes in
a real-subsoil to study different methods for determining the effective barrette
height, the linear and nonlinear soil models. Also, parametric studies are
presented to investigate the behavior of laterally loaded barrette/barrette groups.

Chapter (6): Conclusions and Recommendations.

This chapter presents the summary and conclusions derived from the thesis,
followed by recommendations for future work. Also, a list of research extracted
from this thesis is presented.
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CHAPTER 2
2 LITERATURE REVIEW

2.1 Introduction

Modeling barrettes considering their geometry and surrounding soil is a
complicated problem. Methods for analyzing piles are used to simplify this
problem. In those methods, Barrettes are treated as piles with an equivalent cross-
sectional area. Most of these methods are verified with the results of the in-site
pile-load test. For example, behaviors of laterally loaded piles were studied by
comparing numerical results with those obtained from the full-scale in-site pile-
load test, Russo et al. (2008) [52]. A simplified numerical analysis of barrettes
was carried out by Poulos et al. (2019) [48], considering the barrette as a pile
with an equivalent cross-sectional area. The simplified solutions of an equivalent
pile are compared to finite element results for the barrette/barrette group in their
analysis. Kumari et al. (2020) [32] used the three-dimensional finite element (3D-
FE) for comparing the barrette load capacities with those of circular piles with
the same cross-section area.

Many researchers modeled barrettes using the 3D-FE and verified their analyses
with the results of load tests. Zhang (2003) [63] and Mansour et al. (2021) [38]
presented some of those analyses of laterally loaded barrettes tested in Hong
Kong. Rafa et al. (2018) [50] followed their studies with vertically loaded single
barrettes in Bangkok. Besides, Leszczynski (2009) [35] analyzed the barrette raft
for a high-rise building in Warsaw. Znamenskii et al. (2019) [64] presented the
analysis of the barrette raft of a 56-story residential building in Moscow. In their
studies, using 3D-FE for modeling barrettes take into account the full interaction
between barrettes, surrounding soil, and considering the geometry of barrettes.
However, it leads to a large stiffness matrix. Consequently, the analysis takes a
long computational time, even with today's fast computers.

Limited methods for analyzing laterally and vertically loaded barrettes rather
than 3D-FE methods are used. Some of these methods were developed by Basu
(2006) [4], Basu et al. (2008) [7] and Choi et al. (2014) [14] for analyzing
laterally and vertically loaded piles and barrettes embedded in multi-layered soil.
These methods are based on the differential equations governing displacements
of the pile-soil system derived from energy principles. On the other hand,
Kacprzak (2015) [29] proposed a method to determine the load settlement
characteristic of a single barrette in the group of barrettes.
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Barrette foundations are already used in many foundation systems, as in Dubai
Creek Tower. It will be rising to a height of 1.3 kilometers into the sky. Upon
completion in 2021, it will become the tallest tower in the world. The foundation
of this tower consists of 145 barrettes. These barrettes are 58 m in-depth with a
cross-sectional of 2.8 m x 1.5 m, those are arranged into a dense grid of 5 m x 5
m, as shown in Figure 2.1. Dubai Creek Tower’s pile cap is an approximately 20
m thick multi-layered, tiered reinforced concrete top that covers and transfers the
load to the foundation barrettes, as shown in Figure 2.2. Barrettes used for the
foundation have been tested to a world record test load of 363 MN (36,300 tons),
[44]. Other heavy-loaded structures constructed on barrette foundation such as
the Grand Paris Express in France, The One tower in Brussels, the Eastern quay
wall for east Port-Said port, and The Petronas Towers, Kuala Lumpur.

Figure 2.1 Dubai Creek Tower’s barrettes, [65].
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Figure 2.2 Dubai Creek Tower’s pile cap, [66].

2.2 Axially Loaded Barrettes

Thasnanipan et al. (1998) [60] reported the construction practice and the
performance of a barrette constructed in a Bangkok metropolis, using trial
trenching near a canal for trench assessment stability and soil deformation. Also
discussed the choice of the barrette and common defects found in a barrette.

Thasnanipan et al. (1999) [58] and Thasnanipan et al. (2001) [59] compared
the result of load test on the barrette, and it is performance embedded in identical
ground conditions with those from load test on bored pile having the same length.

Lei (2001) [33] presented a new analytical elastic solution and developed
calculation charts and tables for calculating the horizontal stress changes and
displacements caused by the installation of a barrette.

Charles and Lei (2003) [13] investigated long barrette behaviors under
vertical loading to improve the design and analysis.

Lei et al. (2007) [34] presented an approximate 3D semi-analytical method
for analyzing single barrettes, barrette group, and barrette-cap system.

Basu et al. (2008) [5] and Seo et al. (2009) [54] presented a user-friendly
spreadsheet program (ALPAXL) for analyzing axially loaded barrettes
embedded in layered soil.
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Nossan et al. (2009) [43] used the 3D FE Method for analyzing barrette as
deep foundations of two viaducts to sustain lateral earth pressures from a large
sliding soil mass.

Shulyatiev et al. (2013) [55] studied the soil parameters for analyzing
barrette foundation based on the barrette static load-test results.

Lin et al. (2014) [36] studied the axial performance of two heavily
instrumented barrettes in Taipei, with and without grouting. The analysis was
evaluated based on the results of barrette load tests. Also simulated the t-z curves
interpreted from the measured data with depth by the hyperbolic model.

Musarra et al. (2015) [41] evaluated results obtained from the barrette test
for the new Petrobras headquarters building in Salvador, Bahia, northwest of
Brazil, without discussing the designer assumption.

Nguyen et al. (2016) [42] analyzed the result of bidirectional static loading
tests on two shaft-grouted barrettes in Vietnam. The soil profile consisted of
organic-soft clay on silty sand with some gravel and silty clay.

Hsu et al. (2017) [26] carried out a comprehensive analysis for barrettes
based on five load tests on barrettes in the Taipei Basin and Kaohsiung City.
Based on the strains measured at several depths along the pile shaft, complete
side resistance t-z curves for various soil strata are retrieved.

Poulos et al. (2017) [46] presented the foundation system of Entisar Tower
in Dubai. It will be one of the tallest buildings in the world, the foundation system
consisting of barrettes with high-performance concrete, up to 80 m in depth,
embedded in soft rock.

Rabaiotti et al. (2018) [49] showed how barrette was adopted and tested for
anchoring a high retaining wall in the rock on a slope located in the center of
Zurich.

Teparaksa et al. (2018) [57] carried out a load test on the fully instrumented
barrettes. These tests are compared with the calculated ultimate capacity by the
estimated adhesion factor of clay, friction/end bearing of sand.

Manoj et al. (2020) [37] presented a case study of the design for the 100-
storey La Maison tower in Dubai. Barrette raft was selected as an efficient
foundation system to transfer 55 MN load per barrette. Redesign by back-analysis
of reinforced concrete barrette raft, resulting in a reduction of barrette length by
about 11%.

Mert et al. (2020) [39] presented a new hyperbolic method based on the load
transfer method for settlement analysis of axially loaded single friction piles. This
method is obtained by examining 14 pile load tests. Two of them were barrettes.
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Tested barrettes were loaded until they failed. These barrettes were chosen from
friction piles having variable dimensions and located in different regions.

Cao et al. (2020) [12] presented an analysis method of dynamic response for
a rectangular barrette subjected to a time-harmonic vertical force with the aid of
a modified Vlasov foundation model in multilayered viscoelastic soil.

2.3 Laterally Loaded Barrettes

Abbas et al. (2008) [2] presented the results of the 3D-FE analysis of a lateral
loaded single pile. Also investigated the effect of pile shape for both circular and
square cross-sections on the pile response. Besides, studied the effectiveness of
slenderness ratio L/B. Mohr-Coulomb model is used to simulate surrounding soil
and linear elastic model for modeling piles.

El Wakil et al. (2013) [23] presented the results of small-scale laterally
loaded barrettes in the laboratory. It has been reported that the lateral response of
the barrette is influenced by loading direction, and the lateral load capacity is the
greatest when the loading is toward the largest side of the barrette.

Conte et al. (2013) [16] proposed a 3D-FE approach for analyzing laterally
loaded barrettes. This approach was used to analyze the results from some well-
documented loading tests concerning large-diameter piles and large-section
rectangular piles (barrettes) embedded in sandy soils.

Behloul et al. (2016) [8] studied the effect of different soil constitutive
models on the laterally loaded barrette.

Keawsawasvong et al. (2016) [30] presented a numerical solution for
determining the ultimate lateral capacity of barrettes in clay. The 2D plane strain
FE is employed to determine the limit load for this problem.

Ukritchon et al. (2017) [61] investigated new upper and lower bound
solutions for the undrained lateral capacity of barrettes under a general loading
direction and full flow mechanism by using FE limit analysis with plane strain
conditions.

Nasser (2020) [28] used Plaxis 3D [45] to investigate the lateral performance
of single and group of barrettes in cohesionless soils.

2.4 Composed Coefficient Technique (CCT)

El Gendy (2007) [17] used the CCT to reduce the size of the soil stiffness matrix
of single piles, pile groups, and piled rafts. It was a modification of the technique
proposed by Russo (1998) [51]. This technique is dependent on treating piles as
a rigid member having a uniform settlement for all nodes along its shaft and base.
The CCT enables the assembly of pile coefficients into composed coefficients.
Also, applying the nonlinear response of piles by a hyperbolic relation between
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loads and settlements. There is no approximation when generating the flexibility
coefficients of the soil by the CCT. This technique is examined and used
efficiently in many studies. Russo et al. (2012) [53] and El Gendy et al. (2018)
[19] applied this technique efficiently to re-assessment foundation settlements for
the Burj Khalifa, the tallest building all over the world.

The CCT is developed by the author (2016) [18], [27], [20], [21], [22] for
analyzing single barrettes, barrette groups and barrette raft under vertical load as
a rigid and elastic body. In the developed technique, the barrette elasticity is
considered by the finite element method, while that of the soil by the flexibility
coefficient method. This technique is applied efficiently for vertically loaded
barrettes.

In this thesis, the numerical hybrid technique is extended for analyzing laterally
loaded single barrettes/barrette groups. In which the full three-dimensional
interactions between barrettes and the surrounding soil are taken into
consideration. In addition, the CCT reduces the number of equations to be solved
considerably. Also, it enables applying the nonlinear response in the lateral
direction of the barrettes by a hyperbolic relation between the load and
displacement of the barrette.

10
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CHAPTER 3
3 MATHEMATICAL MODEL

3.1 Introduction

A numerical technique for analyzing vertically loaded barrettes previously
presented by the author (2016) [18] is extended to analyze laterally loaded single
barrettes and barrette groups. The soil deformation is determined by the
flexibility coefficient method based on Mindlin’s solution (1936) [40],
considering the full interaction between barrettes and surrounding soil. The
barrette surface is divided into elements considering the compatibility between
soil and barrette displacements at the barrette-soil interface. Then, the soil
stiffness matrix is determined considering the group interaction between barrettes
in the barrette groups. Subsequently, the CCT is used for condensing the soil
stiffness along the barrette surface to be one-dimension along the barrette vertical
axis having variable displacements along the barrette height. On the other hand,
the barrette in the vertical direction is discretized to one-dimensional finite
elements. The barrette-applied load is transformed to the soil interface as contact
forces. The soil stiffness is added to the barrette stiffness generating the full
stiffness matrix of barrette groups to be solved. As a result, the hybrid technique
reduces the number of equations to be solved. Consequently, the analysis requires
less computing time. In addition, it enables the soil nonlinearity response to be
applied by a hyperbolic relation between loads and displacements of the barrette.

3.2 Modeling Laterally Loaded Single Barrette

Following the CCT for modeling single barrette, barrette group, and barrette raft
by the author (2016) [18], a composed coefficient Sx, [KN/m] representing the
soil stiffness of the barrette is developed.

The barrette is divided into many shaft and base elements with n nodes, as shown
in Figure 3.1. Each one is acted upon by a distributed stress. The stresses acting
on the shaft and base elements are replaced by a series of concentrated forces
acting on the nodes to carry out the analysis. The soil displacement is determined
by Mindlin’s flexibility coefficient [40], considering the compatibility between
soil and barrette displacements at the barrette-soil interface.

11
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Where:
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Figure 3.1 Barrette geometry and elements.

Length of the barrette in X-direction, [m];
Width of the barrette in Y-direction, [m];
Height of the barrette in Z-direction, [m];
Length of the element in X-direction, [m];
Width of the element in Y-direction, [m];

Height of the element in Z-direction, [m].
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3.2.1 Soil flexibility matrix

Mindlin (1936) [40] presented a mathematical solution for determining stresses
and displacements in soil resulting from a point load acting beneath the ground
surface. This solution often employed in the numerical analysis of piled
foundations, Poulos and Davis (1968) [47]. Russo (2016) [52] used this solution
to predict the pile-soil interaction based on a hybrid boundary element model
(BEM) approach. The displacement factor Ixij of the point i due to a point load
Qx;, kN, acting at point j beneath the surface (Figure 3.2) is expressed according
to Mindlin’s solution as:

-+ 5 k
c
Ground surface
SRS S, ST ST SIS S,
\\“i\\/é:\)
¢ \%X
Ho+ —= B 5T
Qi L%
6)2///2
O _ T
b) Elevation u,
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B X
r
y
a) Plan & > =
J X
Figure 3.2 The geometry of a point load beneath the ground surface.
; 1 3 — 4y, N 1 N x?
X:: = —_— J—
Y T 16n6,(1—v)\ Ry R, R}
(3 — 4v)x% + 2cz  6czx? M
R’ R,®
+ 4’(1 - s)(l - 2175) 4(1 - s)(l - sz)xz
Ry+z+c Ry (R, + z + ¢)?

13



Mathematical model

Where:

Ri=+r’+(z-¢)’, R,=+/r’+(z+c)’

c Depth of the point load j from the ground surface, [m];

z Depth of the studied point i from the ground surface, [m];
r Radial distance between points i and j, [m];

X Horizontal distance in plan between points i and j, [m];
Vs Poisson’s ratio of the soil, [-]; and

Gs  Soil shear modulus, [KN/m?].
Es
=20 1o
Where, Es Modulus of elasticity of the soil, [KN/m?].

()

Now, the displacement in x-direction usij [m] at the point i due to a point load Qx;
[KN] acting at point j beneath the surface (Figure 3.2) can be expressed as:

Ugij = Ixi,j ij (3)

Where:
Usi Soil displacement in the x-direction of any shaft or base node i, [m];

Qxj  Contact force in the x-direction on any shaft or base node j, [KN];

n Total number of nodes; and

Ixi,j  Flexibility coefficient of node idue to a concentrated force in the x-
direction on node j, [m/kN].

Or in matrix form:

{us} = [Ix][{Qx} (4)
Where:
{us} n Soil displacement vector of the single barrette in the x-direction;

{Qx} n Contact force vector of the single barrette in the x-direction; and
[IX]  nxn Soil flexibility matrix of the single barrette.

Inverting the soil flexibility matrix in Eq. (4) leads to:

{Qx} = [Sx]{us} ()

Where [SX] are n x n soil stiffness matrix of the single barrette, [Sx] = [Ix]™.
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3.2.2 Soil stiffness matrix

To describe the formulation of composed coefficients for generating the soil
stiffness matrix. Consider, as an example, the simple barrette shown in Figure
3.3a, which has a total of n = 60 surface nodes in this case.
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Figure 3.3 The surface mesh of a single barrette.

The barrette of 3D is converted into a 1D model as presented in Figure 3.3b,
which has n, = 11 nodes in 11 levels only. Each node has a force and a
displacement in the horizontal direction. This problem unknowns are reduced to

15
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be 11 contact forces Qxyi and 11 horizontal displacements uyi on the soil-barrette
interface.

Displacements of the soil adjacent to all nodes of the single barrette shown in
Figure 3.3a is rewritten in an expanded matrix as:

Ugq le,l IX1’25 1X1'60 Qxl
Usps p = [IXz51 . IXz525 o IX560 [ Qx5 (6)
Use0 Ixeo1 - Ixeoas - Ixeoeol \Qxg

The total soil flexibility matrix in Eq. (6) can be written in a matrix form as Eq.
(4). Inverting the soil flexibility matrix in Eq. (6) leads to the total soil stiffness
matrix in Eq. (7), which can be written in a matrix form as Eq. (5).

Q.Xl |'le’1 SX1’25 SX1’60 ] U1
Qxzs p = [SX251 o SX2525 . SXa560 |4 Us2s (7)
Q60 SX601 o+ SXe025 o SX60,601 \Us6o

Where Sx;, j is the soil stiffness coefficient of the single barrette, [KN/m].

The barrette is represented by a vertical member having a variable horizontal
displacement along its height to reduce the number of unknown values in this
problem. All nodes in the 3D model, which have the same level, are assumed to
have the same displacement. For example, nodes 1 to 6 in Figure 3.3a will have
the same displacement un1. Another point of view in choosing this approach is
that the designer is interested in the soil displacement and contact forces at
different levels on the barrette height, not at each barrette node. This assumption
can establish the relationship between displacement and the contact force on each
node in 1D. In Eqg. (7), the summation of rows and columns corresponds to the
barrette node i in 1D, leads to:

6 \ r 6 6 6 30 6 60 1/( 6 3\
2,05 || L2 5wu), ) Sr ) sw |12
i=1 1 i=1j=1 i=1j=25 i=1j=55 i=1 1
30 30 6 30 30 30 60 30
(0] =2 Ysnsn D smiey 3 snf{ 3 ] |
i=25 5 i=25j=1 =25 j=25 =25 j=55 i=25 5
60 60 6 60 30 60 60 60
D o) ST YT |
\\/=55 11/ =55 =1 i=55j=25 i=55 j =55 1 \\;=55 11/

(8)
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Accordingly, Eq. (7) of the soil stiffness matrix can be rewritten for the barrette
of 1D in composed coefficients as:

Qxp; [SXb22 = SXpzs o SXpz11] (Ub2
Qxps ¢ = Sxps2 o SXpss - SXpsi1 |{ Uss (9)
Qxp11 Sxp112 o SXp115 - SXp1111d \Up11

Where:
Sxpbi,j Composed coefficient of leveliin 1D single barrette due to a
concentrated force in the x-direction at level j, [KN/m];

Ubi Soil displacement of level i in 1D single barrette in the x-direction, [m],
Up2 = Usi= Usp= ...= Us6, ....., Up11 = Uss5 = ...= Use0; and

Qxpi  Contact force of leveliin 1D single barrette in the x-direction, [kN],

Qszz QX1+ QX2+ R QX6 ........ QXbllz QX55+ - QX60,

The first level of each barrette has no contact with the surrounding soil. So Qxb1
=0, Sxb1,i =0, and up; is the barrette-head displacement in the x-direction, where
i is barrette level. Consequently, the composed soil stiffness matrix of the single
barrette in Eq. (9) can be expressed in a matrix as:

0 0 0 0 0 0 0 1,u,
Qbe 0 be2’2 be2'5 beZ,ll Up2
Qxb5 0 beS,Z be5'5 be5'11 Ups (10)
Qxb11 0 bell,Z be11'5 bell,ll— Up11

Eqg. (10) shows that the soil stiffness matrix in Eq. (7) of size 60%60 is reduced
considerably to an equivalent soil stiffness matrix of 11x11. The composed soil
stiffness matrix in Eq. (10) is written in a matrix form as:

{Qx} = [Sxp){up} (11)
Where:
{uv} np Soil displacement vector of the single barrette levels in the x-direction;

{Qx} np Contact force vector of the single barrette levels in the x-direction; and
[Sxb] nb % np Composed soil stiffness matrix of the single barrette.

17



Mathematical model

3.2.3 Barrette stiffness matrix

In this analysis, the elasticity of the barrette is considered. The one-dimensional
finite element method is used for analyzing the barrette body, which is exposed
to external forces on the soil-barrette interface as soil reactions in addition to the
applied load on its head as an action. The compatibility between horizontal
displacements of the barrette and the soil displacements at the soil-barrette
interface is taken in the horizontal direction.

From the finite element, the beam stiffness matrix of the barrette element e is
expressed as (Figure 3.4):

_n™

PTN'/

ERRZ2

P)9

—>e )/

My~

Figure 3.4 The beam element with the applied load.

Px; 12 6h, —12 6h, 7,
My; E,L.|6n, 4h,> —6h, 2h°|)0V
P (= 7p 3 [-12 —6h, 12 —6h.|) Y (12)
My;J 6h, 2h,> —6h, 4h,21\0Y/,

Ep Modulus of elasticity of the barrette element e, [KN/m?];
lpe Moment of inertia of the barrette element e, [m?];

he Height of the barrette element e, [m];

Pxi External force in the x-direction on node i, [KN];

My;  External moment about the y-axis on node i, [KN.m];

Ui Displacement in the x-direction of node i, [m]; and

Oyi Rotation about the y-axis at node i, [°].

18



Chapter 3

Eq. (12) could be written as:

le. Bui'l’ Bu@i’i Bui’j
Myi _ Beui’i BQi’i Beui'j
Px] - \ B‘uj’i Buej,i Buj,j
My] e B@uj'i Bej,i BQuM
Where:
12E,1
Bui’i — Bu” — p3 Pe,
e
12E,1
p-pe
Bui,j = Bu]"l' = _T:
e
6E,1
Bu@i'i = Bu@i,]- = BGui‘i = BHuj‘l- = hpzpe,
e
6E,I
BHui,j = Bqu,i = BU.H]J = BGu],] = — hpzpe,
e
4E,1
BGui,i = Bu@m = P pe,
he
2E,1
p-pe
BHL-J- = Bej,i - h—
e

Bu9i_j
Buf;
B6;

u;

Oy,

Y

0y

(13)
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Figure 3.5 The finite element mesh of the barrette and the element
geometry.

From Eq. (13), the assembled beam stiffness matrix for the single barrette shown
in Figure 3.5 is:
{Px} = [Bx]{6x} (14)

Where:
{Px} 2xn, Vector of applied load on the single barrette levels, {Px1, Mxy, 0,

0,...};
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{0x} 2xn, Deformation vector of the single barrette levels; {u1, 01, uz, 02,...};
and

[Bx] (2%xny)x(2xn,) Beam stiffness matrix of the single barrette levels.

Eq. (14) can be expressed in an expanded matrix as:

(le\ [ Bul’l Bu91’1 Bullz Bu91’2 0 0o ... ] (ul \
Myi BQuLl 301,1 BHuLZ 391,2 0 0o ... le
0 Buz‘l Bu92,1 ZBUZ,Z ZBUQZ,Z BuZ‘g Bu92‘3 ...... Uy
) 0\ _[BOuy, BO,y 2BOu,, 2B6,; BOuy3 Bbs ... JLAZA
0 0 0 Bu2,3 Bu0213 Bu3‘3 Bu93'3 ...... us
0 0 0 BQUZ‘g 302‘3 BBu3‘3 303‘3 ...... 9y3
L ) - e e L )
(15)

To consider the compatibility between barrette and soil displacements at the
soil-barrette interface, Eq. (14) is expressed as:

[Bx]{6x} = {Px} — {Qxp} (16)
Substituting Eq. (11) into Eq. (16) leads to:
[Bx]{6x} = {Px} — [Sxp]{up} (17)

The CCT is used to formulate the soil stiffness matrix for the barrette as a vertical
member. This soil stiffness matrix takes into account the interaction effect among
all the soil-barrette interface nodes. By assuming full compatibility between
barrette and soil displacements uni and uj, the following equation is obtained:

[[Bx] + [$x,]]{8x} = (Px} (18)

The full soil stiffness matrix of the single barrette in Eq. (18) can be expressed in
an expanded matrix, Eq. (19).
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Px;
My;

0

0

p—

0

0

.

[ Bulll Bu@Ll Bu1’2 Buel’z 0 0 ... (ubl 3
BHuLl 801’1 Baul‘z B01'2 0 0o ... bel
Buz’l Buezll ZBuZ,Z + bezrz ZBuez’Z Bu2'3 + bez’g Bu62'3 ...... Upy
BQuZ‘l 392,1 ZBHU,Z'Z ZBHZ,Z BQU,Z‘S 392'3 ...... J Hybz \

0 0 Bu2,3 + be3'2 Buez'g Bu3’3 + be3,3 Bu93'3 ...... Up3
0 0 Bt9u2'3 392’3 BQU3‘3 B63,3 ...... beB
e aee e L J
(19)

Solving the system of linear equations of Eq. (19) gives displacements and
rotations at each node. These are equal to the soil deformations at that node.
Substituting soil displacement from Eq. (19) into Eq. (11) gives contact forces
Qxpi on the barrette.

3.2.4 Multi-layered soil

Computing soil displacement usij using Mindlin solution is applied by
characterizing soil layers around the barrette by the soil modulus of elasticity and
Poisson's ratio of points j. Where usij is lateral soil displacement on any shaft or
base node i due to a lateral point load at point j.

In case the shaft element crosses two soil layers, the soil properties will take as a
ratio of the element height that crosses these layers, as shown in Figure 3.6.

Eslhl + ESZhZ

= 20

s hy + h, (20)
Vs1hy + Vs hy

=— - 21

Vs hy + Iy (21)

Where:
Es Modulus of elasticity of the soil that used in Mindlin solution, [KN/m?];
Vs Poisson’s ratio of the soil that used in Mindlin solution, [-];
Esi Soil modulus of elasticity of layer i, [KN/m?]; and
Vsi Poisson’s ratio of the soil of layer i, [-].
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Figure 3.6 The geometry of the shaft element lies between two layers.

3.2.5 Nonlinear analysis of barrette

Russo (1998) [51] presented a numerical method for analyzing piled raft. In this
method, piles were modeled as interactive linear or nonlinear springs. This
nonlinear method is extended by the author (2016) [18] for analyzing vertically
loaded barrette. The nonlinear relation between loads and displacements of the
barrette is determined by following this method. A hyperbolic function between
the load on the barrette head and the settlement is considered.

The nonlinear behavior of the barrette load-displacement in the horizontal
direction is:

un
1 u, (22)

=+
Sx Hlim

P, =

Where:
Un Nonlinear displacement in the x-direction of the barrette, [m]; and

Hiim  Horizontal limit load, [KN].
In Figure 3.7, the initial tangent modulus of the barrette is obtained from the

linear analysis. This modulus is equal to the modulus of soil stiffness Sx. The
horizontal limit load Hiim is a geometrical parameter of the hyperbolic relation.
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Linear analysis

| \\/ s Limitbarretteload Ajim[KN]

Nonlinear analysis

Barrette load P, [KN]

Nonlinear settlement ¢, [m]

Figure 3.7 The barrette load-displacement curve (hyperbolic relation).

3.3 Modeling Laterally Loaded Barrette Groups

The developed hybrid technique is extended to analyze laterally loaded barrette
groups. This technique takes into account the interactions of soil elements with
the barrette elements. The soil stiffness matrix is determined considering the
group interaction between barrettes in the barrette groups. As for the single
barrette, the barrette itself is analyzed using FE. The nonlinear response is
considered by a hyperbolic relation between the lateral load and displacement of
the barrette.
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3.3.1 Soil flexibility matrix

To explain the proposed technique, consider the barrette group in Figure 3.8,
which consists of np = 3 barrettes. Barrettes are divided into shaft and base
elements with a total number of nodes ng= 166. Each barrette i in the group
system is subjected to a head force in x-directions Pyxg;.

y
P ) \ PX"Q— Pﬂ
L " 1 + + >
L 1o ] -=-=1-F -1 L _ L
8N 3:3 4 Neste6 67 20N125 Ny X
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Figure 3.8 The surface mesh of the barrette group.

The total soil flexibility matrix of the barrette group can be expressed in an
expanded matrix as:
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{usgl}
usg64 1
ungS
{ \ =
u59124 2
{u59125}
\Usg 166/,
[ ngl,l ng1,64 ngl’65 ngl‘124 ngl,lZS ng1,166 ) {ngl}
Ixgea1 - IXgea64 I[Xg6a65 - [Xgea12a [Xgeanzs - IXgea 166 Qxgea),
Ixges1 - IXge564 I[Xg6565 - [Xges124 IXge5125 - IXg65166 {ng65}
ng124,1 nglZ4,64 ng124-,65 ng124,124- ng124,125 ng124-,166 ng124 2
1x9125,1 ng125,64 ng125,65 1xg125,124 ng125,125 1xg125,166 {nglzs}
[xg1661 - [Xg16664 Xg16665 - [Xg166,124 [Xg166,125 - [Xg166,166] \(QXg166),

(23)
Where:
Ng Total number of nodes in barrette group;

Soil displacement of the barrette group in the x-direction on any shaft or
base node i, [m] ;
Qxg;  Contact force of the barrette group in the x-direction on any shaft or base
node j, [kN]; and

Ixgi,j Flexibility coefficient of the barrette group of node i due to a concentrated
force in the x-direction on node j, [m/kN].

Usgi

The total soil flexibility matrix of the barrette group in Eg. (23) can be written in
a matrix form as:

{usg} = [1xg]{ @y} (24)

Where:
{usg} ng Soil displacement vector of the barrette group in the x-direction;

{Qxg} ng Contact force vector of the barrette group in the x-direction; and
[Ixg] ng % ng Soil flexibility matrix of the barrette group.

Inverting the barrette group flexibility matrix in Eq. (24) leads to:

{Qxg} = [Sxg]{usy} (25)
Where [Sxg] are ngxng Soil stiffness matrix of the barrette group, [Sxg]=[1xg] ™.

26



Chapter 3

3.3.2 Soil stiffness matrix

Consider the simple barrette groups shown in Figure 3.8. All nodes in the 3D
model, which have the same level for each barrette, are assumed to have the same
displacement. For example, nodes 1 to 8 in barrette number 1 will have

approximately the same displacement ung2. This assumption reduces the size of
the soil stiffness matrix. Also, it can establish the relationship between

displacements and forces on each barrette level in 1D. It can be done by equating
all displacements in each barrette levels in 3D by only an equivalent displacement,

as shown in Figure 3.9.

The barrette group of 3D is converted into a 1D model as presented in Figure 3.9,
which has a total number of barrette levels npg = 28 with nodes numbers 28 only.
Each node has a force and a displacement in the horizontal direction. The
unknowns of the problem will be reduced to npg contact forces Qxngi and
displacements ungi on the soil-barrette interface for all barrette nodes.

The total soil stiffness matrix of the barrette group in Eq. (25) can be expressed
in an expanded matrix as:
ng64 1

{ng65 }
Qxg124),
{ngus}

Qxg166) 5 )

[ ngl,l ng1,64- ng1,65 ng1’124 ng1'125 ngl,166 i ({usgl} A
1

A
~~

ng64,1 Sx964'64 ng64,65 ng64,124 SX964‘125 ng64,166 usg64-

SXg65,1 - SXg65,64 SXg65,65 + SXg65,124 SXg65,125 - SXg65,166 {u5965}
2

SXg124,1 - SXg124,64 SXg124,65 - SXg124,124 SXg124,125 - SXg124,166 Usg124

SXg125,1 -+ SXg125,64 SXg125,65 - SXg125,124 SXg125,125 - SXg125,166 {usylZS}
3

usgl66

[SXg166,1 - SXg166,64 SXg166,65 - SXg166,124 SXg166,125 - SXg166,166
(26)
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Figure 3.9 The barrette group displacement in one-dimension.

The summation of rows and columns corresponds to the barrette node i in 1D of

the barrette group in Eq. (26), leads to:
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8
E ngi
i=1
64
$ ony
=57 1
70
g ngi
i=65 —
124
Qx;
i=T19 2
(130
é ngi
i=125
166
Qxgi
i=T61 3
_ g _
64 8 64 8 70 8 124 8 130 8 166
E Zngi,/ z Sxgij ZZngiJ Sxgij Z Sxgij e Z Sxgij
= = =i i=1i=es i=1i5Tlo = i=1icT61
64 8 64 64 64 70 64 124 64 130 64 166 Upg1
LTS 1)L 5 LD 5 ;T 5 SRS 5 ot
=57 j=1 i=57 (=57 =57 i=e5 {57 i=T19 i=57i=125 {557 i=Te1 u
70 8 70 64 70 70 70 124 70 130 70 166 bg9/4
D, 2 Sray e 2 D Sxany D D Swo e 2D kot DY Svg e D D Sk | | (Wbt
i=es j=1 {65 (=57 {65 i=e5 {=65 i=T19 {=65 i=125 {65 i=To1
124 8 124 64 124 70 124 124 124 130 124 166 Upg20),
DX 1D L0 XD 15 P15 35 IG5 S0 | P
i=Ti9 j=1 i=T19 {=57 5119 i=65 i=T19 i<T19 i=T19 i=125 i=T19 i<T61
130 8 130 64 130 70 130 124 130 130 130 166
D, 2 Sra e 2D Sxawy D D Swog e YD Skaty ) Y Swgy e ) D Sy | (bg2s)y
i=125 j=1 5125 (=57 5125 (=65 1125 i=T19 5125 i=125 5125 i=T61
166 8 166 64 166 70 166 124 166 130 166 166
D, 2 Sxa e 2 D Sxany D D Sk DD Skoiy ) Y Swgg e D, D Svy
Li<Te1j=1 i=T61 {=57 i=T61 i=65 i=To1 i=T19 i=To1 i=125 i=To1 i=T61 7

(27)

Accordingly, Eq. (26) of the soil stiffness matrix for the barrette of 1D can be
rewritten in composed coefficients as:
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( {Qxbgz} )
Qxpgo),
Qxbgll}

2

{QxngO

QxngZ}

Qxpg28),
[ SXpg22 - SXpg29 SXpg211 - SXpg220 SXpg222 - SXpg2,28 ] {”ng}
1

SXpg92 o SXpgo9 SXpgoa1 - SXpgo20 SXpg9pz - SXpgoo2s Upbg9

SXpg11,2 - SXpg11,9 SXbg11,11 - SXpg11,20 SXbg11,22 - SXpg11,28 {ubyll}
2

A
~~

SXpg20,2 -+ SXbg20,9 SXbg20,11 -+ SXbg20,20 SXbg20,22 -+ SXbg20,28 | | \Ubg20

SXpg222 - SXpg22,9 SXpg22,11 - SXpg22,20 SXbg22,22 - SXpg22,28 {ubyZZ}
\ 3

[SXpg28,2 - SXbg28,9 SXpg28,11 - SXbg28,20 SXbg28,22 - SXpg28,281 \\Ubg28
(28)
Where:
ungi  Soil displacement of the barrette group levels in the x-direction in node i
of 1D barrette group, [M]; Ubg2 = Usgi= Usga= ...= Usg, ......, Upg2o = Usg119

= ...= Usg124, ....., Ubg2s = Usg161 = ...= Usg166,

Qxngi  Contact force of the barrette group levels in the x-direction on node i of
1D barrette group, [KN]; QXbgo= QXg1+ QXgo+ ... + QXgs, ......, QXpgo=
QXg57 + ... + QXg64, ......, QXgb2s= QXg1e1+ ... + QXg166; and

Sxbgij Composed coefficient of the barrette group of level i due to a
concentrated force in the x-direction at level j, [KN/m].

The first level of each barrette has no contact with the surrounding soil. So QXpg1
= QXbg10 = QXbg21 = 0, SXbg 1,i = SXbg 10,i = SXbg 21,i = 0, and Ung1, Ubg1o, Ung21 are
barrette head displacemets in the x-direction, where i is barrette level. Eq. (28)
can be written as:
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0 )
Qxpg2
X
Qxpgo)
0
Qxpg11
47 b =
X
Q bg20/,
0
Qxpg22
]
\\Q%Xpg28/ ;)
Upg1
0 0 0 0 0 0 0 0 0 0 Upg2
0 begZ,Z begz'g begz,ll begZ,ZO begZ,ZZ begZ,ZB
0 ubgg 1
0 beg9,2 beg9,9 beg‘),ll beg9,20 beg9,22 beg9,28 ubgw
0 SXpg11,2 -+ SXpg11,9 SXbg11,11 - SXpg11,20 SXbg11,22 -+ SXpg11,28 ) Upg11 [

0 Sxpg202 - SXbg209 SXbg20,11 - SXbg20,20 SXbg20,22 - SXpg20,28 | | \Ubg20/,
u
0 Sxpg222 - SXpg22,9 SXpg22,11 - SXbg22,20 SXbg22,22 -+ SXpg22,28 bg21

0 i Upg22
[0 SXpg282 - SXbg289 SXpg2811 « SXhg28,20 SXpg2822 - SXpg28,28]
\\Upbg28) ;)
(29)
The composed soil stiffness matrix in Eq. (29) is written in a matrix form as:
{Qxbg} = [beg]{ubg} (30)

Where:
{ung} nug Soil displacement vector of the barrette group levels in the x-direction;

{Qxng} Nng Contact force vector of the barrette group levels in the x-direction;
and

[Sxbg] Nbng x Nbg Composed soil stiffness matrix of the barrette group.

Eq. (29) shows that the soil stiffness matrix in Eq. (26) of size 166 x 166 is
reduced considerably to an equivalent soil stiffness matrix of 28 x 28.
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3.3.3 Barrette stiffness matrix

The one-dimensional finite element method is used for analyzing barrettes, as
shown in Figure 3.10. The composed coefficient technique is used to formulate
the soil stiffness matrix of barrettes as vertical members, Eg. (30).
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Figure 3.10 Finite element mesh of the barrette group and element
geometry.

The barrette stiffness matrix of the barrette group is formulated according to Eq.
(12) to be:
ngi Bul"i Bu@i,i Bui'j Bu@i'j ugl'
Mygi _ BHui,i BHl-'i Beui‘j BGi’j Bygi
Pxg (| By, Bu§; Bu, Buf,|) Uy
My,), |BOw,; B, Boy,; B, |\0Yy

(31)

Where:
Pxgi  Barrette group external force in the x-direction at level i, [KN];

Mygi  Barrette group external moment about the y-axis at level i, [KN.m];
Ugi Barrette group displacement in the x-direction of level i, [m]; and
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Oygi  Barrette group rotation about the y-axis at level i, [°].

{Pxg} = [Bx,]{8x,} (32)
Where:
{Pxq} 2xn, Vector of applied load on the barree group levels, {PXg1, MXq1, O,
0,...};
{dXg} 2xn, Deformation vector of the barrette group levels; {ug1, 6g1, Ug2,
0g2, ... }; and

[Bxg] (2%ny)x(2%n,) Beam stiffness matrix of the barrette group levels.

From the finite element method, assuming full compatibility between barrette
and soil displacements at the soil-barrette interface, Eq. (32) can be expressed as:

[Bxg]{ng} = {ng} —{Qxp} (33)

Substituting Eqg. (30) into Eq. (33) leads to:

[Bxg {8} = {Pxg} = [Sxig]{ttng} (34)

This soil stiffness matrix takes into account the interaction effect among all the
soil-barrette interface nodes. Also, it considered the group effect of the single
barrette in the group of barrettes. By assuming full compatibility between
barrettes and soil displacements un.i and u.i, the following equation is obtained:

[[Bxg] + [beg]] {8x} = {Px} (35)

Solving the system of the linear equation (35) gives displacements and rotations
of each node. These deformations are equal to those of the soil at that node.
Substituting soil displacement from Eq. (35) into Eq. (30) gives contact forces
QxXngi ON barrettes.
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CHAPTER 4

4 Validation of the program

4.1 Introduction

The developed program is used for analyzing laterally loaded single
barrettes/barrette groups embedded in multi-layered soil, linear and nonlinear
models. Firstly, barrette displacements and bending moments with barrette
heights obtained by the present hybrid-technique are compared with those from
an analytical analysis in the available literature to verify the program. Another
comparison between dimensionless barrette-head displacements obtained by this
hybrid analysis and the analytical solution is also presented. The nonlinear
analysis of a laterally loaded single barrette is verified by comparing results from
this model with those using an equivalent circular shafted pile to represent the
barrette. Also, case studies are performed using the developed technique to
compare the results with those from load tests of the laterally loaded single
barrette and 3D-FE model. In addition, two different models using 3D-FE are
used to compare the results from these models with those from using the
presented program. These models are available in the well-known program Plaxis
[45]. In this comparison, the results of barrette displacements, shear forces, and
bending moments along the barrette height obtained from the different models
are compared.

4.2 The Validity of Linear Analysis

4.2.1 Description of the test problem

The barrette displacements with barrette heights obtained by the present analysis
using flexibility coefficient and CCT are compared with those obtained by Basu
et al. (2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15], to verify the
present analysis of a laterally loaded single barrette in multi-layered soil.

An analytical analysis of a laterally loaded single barrette embedded in a multi-
layered soil medium is available in the references Basu et al. (2007, 2008) [6],
[7] and Choi et al. (2014, 2015) [14], [15] and compared with those by equivalent
3D-FE using ABAQUS [1]. In this analysis, the differential equations governing
the barrette-soil system displacements were obtained using the principle of
minimum potential energy and calculus of variations. Closed-form solutions
were produced for barrette displacements and forces along the barrette shaft by
using the initial parameters method for a circular pile analysis with an equivalent
diameter with the same second moment of inertia as that of the barrette.
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Figure 4.1 The subsoil of single barrettes.

The single barrette shown in Figure 4.1 is analyzed for seven different cases with
different geometries, lateral loads, and subsoil conditions. Barrettes geometry,
lateral loads on the barrettes head, and modulus of elasticity of barrettes E, for
the chosen cases are listed in Table 4.1. The subsoil of each case consists of
different layers. Each layer has a different modulus of elasticity Es, and Poisson's
ratio vs are listed in Table 4.2 and shown in Figure 4.2,
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Table 4.1 Barrette geometries, Basu et al. (2007, 2008) [6], [7] and Choi et al.
(2014, 2015) [14], [15].

Case Cross-szection Height [m] Modulus of elasticitg of Load
[m?] the barrette [KN/m?] [KN]

1 0.5x0.5 10 24x10° 300
2 0.7x0.4 15 24x10° 300
3 2.8x0.8 40 25x10° 3000
4 0.7x0.4 10 25x10° 300
5 0.53 x 0.53 10 25x10° 300
6 0.7x0.4 15 24x10° 300
7 05x0.5 15 25x10° 500

Table 4.2 Soil properties, Basu et al. (2007, 2008) [6], [7] and Choi et al. (2014,
2015) [14], [15].

Laver Layer depth
N)C/) from the Modulus of | Poisson’s
Case ' Soil type ground elasticity ratio
| surface Es [MN/m?] vs [-]
z [m]
1 Very stiff clay 2 20 0.35
L2 5 Medlggnddense 5 35 0.95
45 3 Dense sand 8 50 0.20
4 Dense sand 0 80 0.15
1 Very stiff clay 1.5 20 0.35
2 Loose sand 35 25 0.30
3 -

3 Medium dense 8.5 40 0.95

sand
4 Dense sand o 80 0.20
6 1 Dense sand 0 50 0.20
F 1 Medium dense o 40 0.95

sand
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4.2.2 Numerical analysis

A comparison of results of the laterally loaded single barrette in a multi-layered
soil medium of the present analysis with those by Basu et al. (2007, 2008) [6],
[7] and Choi et al. (2014, 2015) [14], [15] is presented here. Both the barrette
lengths and widths are taken as two elements. Barrettes heights are divided into
vertical elements with h = 0.5 [m], in all cases, as shown in Figure 4.3. Except
for case (3), the barrette length and width are taken as four elements. The Barrette
height is divided into vertical elements with h = 2 [m], as shown in Figure 4.4. In
the analysis, the barrette material is considered to be elastic. The barrette is
analyzed as a 1D finite element, as shown in Figure 4.5.

2@};

0 |

[~ /
\/

I~ /
\/

I~ /
\/

I~ /

RNy =

Figure 4.3 The surface element of the barrette for all cases except case (3).
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4.2.3 Results and discussion

The barrette displacement u and bending moment along the barrette height
obtained from the present analysis using flexibility coefficient and CCT for the
seven cases are compared with those by Basu et al. (2007, 2008) [6], [7] and Choi
et al. (2014, 2015) [14], [15], as shown in Figure 4.6 to Figure 4.16 and listed in
Table 4.3.

Results show that the absolute difference between the barrette head
displacements in the present analysis and that by Basu et al. (2007, 2008) [6], [7]
and Choi et al. (2014, 2015) [14], [15] is less than 0.05 [cm] for all cases except
case (3) which is 0.11 [cm]. This difference when using FEA is less than 0.08
[cm] for cases (1, 2, 6) and 0.2 cm for the third one, as shown in Figure 4.6.

Also, the absolute difference between the computed barrette base displacements
in the present analysis and those by Basu et al. (2007, 2008) [6], [7] and Choi et
al. (2014, 2015) [14], [15] is less than 0.04 [cm] for all cases except case (3)
which is 0.06 [cm]. This difference when using FEA is less than 0.03 [cm] for
cases (1, 2, 6) and 0.07 [cm] for the third one, as shown in Figure 4.7.

Comparing the maximum bending moment using the present analysis and those
from Basu et al. (2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15], the
differences is less than 11 %, as listed in Table 4.3.

In general, it can be concluded that the results of the present analyses using
flexibility coefficient and CCT are in good agreement with both analytical results
and numerical results using full 3D FEA.

Table 4.3 Comparison between Max. Bending moment obtained from Basu et al.
(2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15] with those
obtained from the present analysis using flexibility coefficient.

Max. Bending moment [KN.m]
Case | Basuetal. (2007, 2008) Difference
and Choi et al. (2014, Present analysis [
2015)
Case (3) 7681.2 7258.1 -5.51%
Case (4) 224.4 201 -10.43%
Case (5) 184.2 164.3 -10.80%
Case (7) 202.6 204.5 0.94%
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Figure 4.7 Comparison between Min. Displacements.
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Figure 4.8 Displacement u with the barrette height (case 1).
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Figure 4.9 Displacement u with the barrette height (case 2).
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Figure 4.10 Displacement u with the barrette height (case 3).
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Figure 4.11 Bending moment with the barrette height (case 3).
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Figure 4.12 Displacement u with the barrette height (case 4).
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Figure 4.13 Bending moment with the barrette height (case 4).
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Figure 4.14 Displacement u with the barrette height (case 5).
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Figure 4.15 Bending moment with the barrette height (case 5).
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Figure 4.16 Displacement u with the barrette height (case 6).
4.3 The Validity of Dimensionless Barrette Displacements

4.3.1 Description of the test problem

Dimensionless barrette-head displacements obtained by the present analysis are
compared with those of Choi et al. (2014) [14] to verify the hybrid technique.
These dimensionless results are used to investigate the relative stiffness of
barrette and soil and the barrette slenderness ratio on square barrettes.

4.3.2 Numerical analysis

Figure 4.17 shows a comparison between results of square barrettes embedded in
two-layers soil under lateral force Px obtained from the present model and Choi
et al. (2014) [14]. Different values of the modified soil shear modulus ratio
Gs1'/Gs2” = 0.2, 0.5, 2, and 5 with H/B" = 50, L/W = 1, vs = 0.3 and Ep/Gs2" =
1000 were considered. Where: B* is the equivalent pile diameter that produces
the same second moment of inertia as that of a circular pile ( B* =
[16WL/3m]*/*), and G* is the modified shear modulus of the soil (G, =
0.7G4(1 + 0.75v;)) for barrettes, Choi et al. (2014) [14]. The thickness hs of the
topsoil layer is varied from zero to H. The ratio Uz-1ayer/Unomog. OF the barrette-head
displacement in two-layer and homogenous soil profiles as a function of hs/H for
square barrettes are shown. The barrette-head displacement in homogenous soil
Unomog. IS computed using Gs2* for the entire soil medium.
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Figure 4.17 The ratio Uz-1ayer/Uhomog. IN two-layer soil and versus hs/H.

A laterally loaded square barrette embedded in a two-layer soil medium was
analyzed and compared with Choi et al. (2014) [14]. Figure 4.18 shows the
relation between the normalized barrette-head displacement un and the barrette-
soil modulus ratio Ep/Gs avg. The average of the modified soil shear modulus of
the soil layers (GS*an. = (Gs1" + Gg2") /2 0r (G1™ + Ggp™ + Gg3™)/3) is used to
calculate the dimensionless barrette-head displacement u,. The normalized
barrette-head displacement caused by the applied lateral force Pyx was defined as
U, = u|z=oB*Gs*an,/Px, Choi et al. (2014) [14], where u|,, is the barrette-

head deflection at the ground surface. Different values of the modified soil shear
modulus ratio Gs1/Gs2” = 0.2, 0.5, 2, and 5 with H/B" =50, L/W =1, and vs = 0.3
were considered. Also, the topsoil layer thickness hs is considered to be hs = 0.1
H (Soil profile (A)) and 0.5 H (Soil profile (B)).
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Figure 4.18 The normalized un in two-layer soil and versus ratio Ep/Gs avg..

Three different cases of three-layer soil medium are considered for analyzing
laterally loaded square barrette, as shown in Figure 4.19 and Figure 4.20. For the
first case (Case I), the modified soil shear modulus increases with depth, whereas
for the third case (Case Ill), it decreases with depth. For the second case (Case
I). The intermediate layer has the smallest modified soil shear modulus. In
addition, the top two layers thickness hs is considered to be hs; = hs = 0.1 H (Soil
profile (A)) and hs1 = hs2 = H/3 (Soil profile (B)). The normalized barrette-head
displacement un is plotted against the barrette-soil modulus ratio Ep/Gs avg. for
Cases I-111 with H/B" =50, L/W = 1, and vs = 0.3, as shown in Figure 4.19. Figure
4.20 shows the normalized barrette-head displacement un against the barrette
slenderness ratio H/B" for Cases I-111 with Ep/Gs avg.= 1000, L/W =1, and vs = 0.3.
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4.3.3 Results and discussion

It can be noticed from Figure 4.17 to Figure 4.20 that a good agreement between
the results of the present analysis and those of Choi et al. (2014) [14] in all cases.

The thickness of the top layer of the soil is the controlling factor for barrette-head
displacement. The horizontal displacement of the barrette is not influenced by
the properties of the underlying layers in the case where the topsoil layer
thickness exceeds approximately 30% of the barrette height. In the case of a soft
layer over a stiff layer (e.g., Gs1/Gs2"= 0.2 0r 0.5), Uz-layer/Unomog. iNCreases with
an increase in hs/H. The dimensionless barrette-head displacement decreases as
Ep/Gs avg. increases. For long barrettes with barrettes width ratio H/W more than
30 has a very small effect because the barrettes height is reached to the effective-
height.

4.4 The Validity of Nonlinear Analysis

4.4.1 Description of the test problem

The barrette results obtained by the present nonlinear-analysis are compared with
those obtained by Poulos et al. (2019) [48] using 3D FE and using an equivalent
circular shafted pile to represent the barrette to verify the present nonlinear
analysis of a laterally loaded single barrette.

The single barrette shown in Figure 4.21 is analyzed nonlinearly with different
lateral loads values in both the x and the y-directions. Barrette geometry and
modulus of elasticity of barrette E, for the chosen case are listed in Table 4.4.
The subsoil of this case consists of two different layers. Each layer has a different
modulus of elasticity Es, and Poisson's ratio vs are listed in Table 4.5.
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Figure 4.21 Single barrette with subsoil.

Table 4.4 Barrette geometries, Poulos et al. (2019) [48].

Cross-section | Height Modulus of elasticity of the barrette
Case [m?] [m] [KN/m?]
1 1.20x 2.8 20 m 30 x10°
Table 4.5 Subsoil properties, Poulos et al. (2019) [48].
Layer Layer depth Modulus of Poisson’s
. from the ground . )
No. | Soil type elasticity Es ratio vs
| surface [MN/m?] L]
z[m]
1 Clay 30 50 0.49
2 Soft rock 100 500 0.3
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4.4.2 Numerical analysis

A comparison between results obtained from the present analysis and those by
Poulos et al. (2019) [48] is presented herein. The height of the barrette is divided
into equal-elements. Each element has a height of h = 1.0 [m]. Both the barrette
length and width are taken as two elements, as shown in Figure 4.22. In the
analysis, the barrette is analyzed nonlinearly, using a hyperbolic function, to
represent the real load-displacement relation. A horizontal limit load Hiim [KN]
has been used for the nonlinear load-displacement curve. It is usually taken as a
ratio of the ultimate load as Poulos et al. (2019) [48]. Eq. (36) is used to
determine the ultimate lateral load of piles in clay, according to the ECP 202 [56].

H,;=9¢,(z—15D)D (36)
Where:
D The diameter of the pile with the same moment of inertia, [m];
z Depth from the ground surface, [m];
Cu Undrained cohesion of clay, [kN/m?]; and

Hut  Ultimate lateral load, [KN].

To use this equation D is taken as the diameter of the pile with the same moment
of inertia, which will be 2.59 [m] for loads in the x-direction and 1.69 [m] for
loads in the y-direction. So, Hure will be 18782 [kN] for loads in the x-direction
and 13282 [m] for loads in the y-direction where cy is 50 [KN/m?]. Limit lateral
loads were Hiim = 0.772 Huir = 14.5 [MN] for loads in the x-direction and Hiim =
0.753 Huit = 10 [MN] for loads in the y-direction.
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Figure 4.22 The surface element of the barrette.

4.4.3 Results and discussion

The lateral load-displacement curves of the barrette 20 m height in both the x and
the y-directions obtained from the present analysis are compared in Figure 4.23
and Figure 4.24 with those obtained by Poulos et al. (2019) [48]. The results are
in a good agreement.

The load-displacement curve depends on the direction of loading. As reported
before by Zhang (2003) [63], EI Wakil et al. (2013) [23], and Poulos et al. (2019)
[48], when the loading is toward the largest side of the barrette, it is predicted to
carry more load and has a stiffer response than when loaded along the minor axis
due to the high resistance of the barrette loaded along the minor axis.
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Figure 4.23 Load-displacement curve (x-direction).
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Figure 4.24 Load-displacement curve (y-direction).
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4.5 Case Study of Lateral Load Tests

4.5.1 Description of the test problem

Lateral load-displacement relation of the barrette obtained by the present analysis
is compared with that presented by Zhang (2003) [63], which is obtained from
both barrette load test and 3D FE analysis.

Results of load tests of single barrettes having a rectangular cross-section
embedded in a multi-layered soil medium are available in the reference Zhang
(2003) [63]. These tests were performed in Hong Kong.

The barrette in Figure 4.25 is considered and analyzed for different cases. The
barrette geometry and modulus of elasticity Ep for these cases are listed in Table
4.6. The soil properties, modulus of elasticity Es, and Poisson's ratio vs are listed
in Table 4.7 and Table 4.8 and shown in Figure 4.26. Es was estimated from SPT
according to Bowles (1996) [9].

L[m]
S S>>

Layer (1) A
Eq, Va

Layer (2)
Eo, Vo %

Layer (3)
Eg, Vs

E
< 4

Layer (4) Ex, Va 1y

Layer (5) Z
Es, Vs

Layer (6) Z
Es, Vs

Layer (7)
Eg, v

Figure 4.25 Single barrette with subsoil.
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Figure 4.26 Boring logs.
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Table 4.6 Barrette geometries, Zhang (2003) [63].

c Cross-section | Height | Modulus of elasticity of the barrette
ase [mz] [m] [kN/mZ]
1 0.86 x 2.8 51 30.3x10°
2 1.20x 2.7 30 35x10°
Table 4.7 The subsoil properties of case (1), Zhang (2003) [63].
Layer Soil type Layer depth Modulus of | Poisson’s
No. from the ground . .
elasticity Es ratio vs
surface [MN/m?] []
I z [m]
1 Fill (Clayey silty 1.5 13.6 0.3
5 sand with gravel and 3 972 0.3
occasional
3 cobble/boulder) 11 10 0.3
4 Fill (Cobbles) 15 17.6 0.3
Alluvium (Clayey
5 silty sand with 23 11 0.3
gravel)
6 29.5 22 0.3
7 Completely 32.5 36.6 0.3
decomposed granite
8 | (silty sand with 34 47.6 03
9 gravel) 40 63.9 0.3
10 100 83.6 0.3
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Table 4.8 Subsoil properties of case (2), Zhang (2003) [63].

Layer Layer depth Modulus of | Poisson’s
No. . from the ground . .
Soil type elasticity Es ratio vs
surface [KN/m?] L]
I z [m]
Fill (Clayey silty
1 sand with gravel and 15 332 03
occasional
cobble/boulder)
Marine deposit
2 (Clayey silty sand) 19.5 24 0.3
Alluvium (Clayey
3 silty sand with 28 40.75 0.3
gravel)
4 Completely 29.5 69 0.3
decomposed granite
> (Silty sand with 34 52 03
6 gravel) 100 74 0.3
4.5.2 Numerical analysis

The height of the barrette is divided into equal-elements. Each element has a
height of h =2.0 [m] for case (1) and 1.0 [m] for case (2). Both the barrette length
and width are taken as two elements, as shown in Figure 4.27. The barrettes are
analyzed nonlinearly using a hyperbolic function. Horizontal limit loads have
been assumed from the load-displacement curves of Zhang (2003) [63]. These
were 6 [MN] and 5.45 [MN] for the first case and 3 [MN] for the second case.
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Figure 4.27 The surface element of the barrette.

45.3 Results and discussion

The horizontal load-displacement relations of barrettes obtained from the present
analysis are compared in Figure 4.28 to Figure 4.30 with that obtained from load
tests and from using 3D FE carried out by Zhang (2003) [63].

From the comparison of the linear analysis, it was found that the absolute
difference between displacements presented by Zhang (2003) [63] and those of
the present technique is less than 0.1 [cm] in case (1) and 0.05 [mm] in the second
one.

For nonlinear analysis, the difference between the displacement from the present
technique for Hiim = 6 [MN] and that measured displacement is less than 0.31
[cm] in case (1), except when the load is 4330 [kN], the difference is 3.21 [cm].
But for Hiim = 5.45 [MN], the absolute difference is increased to 1.90 [cm] in the
case of load = 4000 [kN]. The difference decreased to 0.05 [cm] when the load
increase to be 4330 [kN]. In case (2), the difference is less than 0.43 [mm]. This
difference is too small comparing to the barrette dimensions.

Finally, The verification shows that the lateral load-displacement from the
present linear and nonlinear analyses are in good agreement with those of the
measured load tests and 3D FE carried out by Zhang (2003) [63].
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Figure 4.29 Nonlinear load-displacement curve, case (1).
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Figure 4.30 Load-displacement curve, case (2).
4.6 Comparative Study of the Present Hybrid Technique

4.6.1 Description of the examination problem

Single barrettes having a rectangular cross-section embedded in subsoil layers is
analyzed using different numerical models, as follows:

1. Model (1): Flexibility coefficient model of soil and CCT for barrettes.

2. Model (2): Embedded pile in 3D finite element soil.

3. Model (3): Traditional 3D finite element model.

The composed coefficient technique CCT is implemented in the flexibility
coefficient model presented in this study. In this case, the barrette is treated as
one-dimension vertical elements. This technigque reduces the time and size of the
problem as these two terms considered as main difficulties in three-dimensional
problems. In model (2), the barrette is analyzed as an embedded pile. However,
treating this pile as one-dimensional beam elements, the soil is treated as block
elements. In model (3), the barrette-soil system is treated by block elements. Both
models (2) and (3) was analyzed by Plaxis [45].

The results of the three models are compared for verification. Two cases of single
barrettes with different dimensions are considered. Each one was analyzed
linearly, considering four different types of layered soil. The modulus of
elasticity Es and Poisson’s ratio vs of these soils are listed in Table 4.9 and sown
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in Figure 4.31. Barrette geometry, lateral load on the barrette head, and modulus
of elasticity for the chosen cases are listed in Table 4.10.

Table 4.9 Soil properties.
| Layer _ o fir OL rﬁ%(;lredger%t:n q Mod_ul_us of Poigson s
Soil Soil description elasticity Es | ratio vs
No. surface 2
[MN/m<] [-]
z [m]
(A) 1 Stiff clay 0 10 0.4
(B) 1 Medium dense o o5 0.30
sand
1 Very stiff clay 2 20 0.35
Medium dense
©) 2 sand 5 35 0.25
3 Dense sand 8 50 0.20
4 Dense sand 0 80 0.15
1 Very stiff clay 1.5 20 0.35
2 Stiff clay 3.5 10 0.45
(D) 3 Medium dense 8.5 40 0.95
sand
4 Dense sand 0 80 0.20
Table 4.10 Barrette geometries.
Case Cross-section | Height | Modulus of elasticity of Load
[m?] [m] the barrette [KN/m?] [KN]
1 2.8 x0.8 40 30x10° 3000
2 2.7x1.2 30 30x10° 3000
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Figure 4.31 Boring logs.
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4.6.2 Numerical analysis

For model (1), the barrette height is divided into equal-elements, each of 1.25
[m]. The barrette length and width are divided into four equal-elements. In model
(2), the barrette represented as an embedded pile, beam element, and the soil
treated as 3D finite elements then analyzed. In model (3), both barrettes and soil
are treated as 3D finite elements with interface elements around the barrette then
analyzed. In both models (2) and (3), barrettes and soil elements are generated
automatically. The soil dimensions around the barrette are extended enough to
ensure full interaction between the barrette and soil. It is taken 40 [m] in both the
x and the y-directions and twice the barrette height in the z-direction. In this case,
the barrette is analyzed linearly. Figure 4.32 to Figure 4.38 shows the element
mesh for the single barrettes with different models.
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Figure 4.32 The surface element of the barrette for model (1).
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Figure 4.33 Element mesh of the single barrette - model (2) - Soil A&B.

Figure 4.34 Element mesh of the single barrette - model (2) - Soil C&D.
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Figure 4.35 Barrette with interface elements - model (3).

L.

Figure 4.36 Plan of element mesh of the single barrette - model (3).
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Figure 4.37 Element mesh of the single barrette - model (3) - Soil A&B.
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Figure 4.38 Element mesh of the single barrette - model (3) - Soil C&D.
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4.6.3 Results and discussion

Barrette deformations and internal forces along the barrette height obtained from
the different models are compared. Figure 4.39 to Figure 4.44 show an example.
Other comparisons are shown in APPENDIX (A).

Results show that the absolute differences between the barrettes head
displacements in the present analysis Models (1) and that by Models (2) and (3),
as shown in Figure 4.39, are less than 10.21% compared with Model (2) and 9.22%
compared with Model (3), which are 0.22 and 0.13 [cm], respectively.

In addition, the absolute differences between the computed barrettes base
displacements in the present analysis Model (1) and those by Models (2) and (3),
as shown in Figure 4.40, are less than 0.24 [cm] compared with Model (2) and
0.26 [cm] compared with Model (3). This behavior is noticed for all cases except
case (2) with soil type (A), which are 0.55 [cm] and 0.39 [cm], respectively.
These differences are too small comparing to the barrette dimensions.

Comparing the maximum bending moments using the present analysis Models
(1) and those from Model (2), as shown in Figure 4.41, the differences are less
than 16 %. The shear and bending moment results are depending on the element
size in the z-direction. In Model (2), the elements are very small so that the shear
force isn't smooth curve and the bending moment is greater than the present
analysis.

In general, it can be concluded that the results of the present analysis using the
flexibility coefficient and CCT are in good agreement with both Models (2) and

@3).
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Figure 4.42 Displacement u for case (1) with subsoil (A&C).
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Figure 4.43 Bending moment for case (1) with subsoil (A&C).
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Figure 4.44 Shear force for case (1) with subsoil (A&C).
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CHAPTER S
5 ANALYSIS OF BARRETTES

5.1 Introduction

A comparative study is presented for determining the effective-height of the
barrette required for the single barrette subjected to lateral loads in a real-subsoil.
The present hybrid analysis is compared with two different methods that are in
the ECP 202 [56]. In addition, soil nonlinearity is studied by comparing results
from the linear model with those of nonlinear. Furthermore, a parametric study
for analyzing laterally loaded barrettes/barrette groups are presented to
investigate the effect of load direction, barrette dimensions, barrettes/soil
properties, the spacing between barrettes, and the barrette arrangement.

5.2 Comparative Study of a Single Barrette in a Real Subsoil

5.2.1 Introduction

A comparative study is presented for determining the effective-height of the
barrette and provides engineers with guidelines for analyzing laterally loaded
single barrettes in east Port-Said, Figure 5.1. In this study, east Port-Said soil
properties are considered because this area characterizes by extended soft clay
layers. These are similar to the soil formation of London, Frankfurt, Rome, Hong
kong, and Dammam.
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Figure 5.1 East Port-Said location.

5.2.2 Barrette properties
The barrette material properties are listed in Table 5.1.

Table 5.1 Barrette material properties.
Modulus of elasticity of the barrette material Ec = 25x10° [KN/m?]

Poisson's ratio of the barrette material ve=10.20 [-]

Studied cases are carried out for a wide range of barrette dimensions, namely
barrette lengths L and widths W with different barrette heights H. The effect of
these variables on the barrette deformations and internal forces of laterally loaded
barrette is investigated. Nine cases of single barrettes are considered, as presented
in Table 5.2. Each one is considered and analyzed with various barrette
heights H ranging from 20 to 60 [m] to determine the effective- height, in a total
of more than 90 cases.

Table 5.2 Studied cases of a single barrette.

Length / Width L=25[m] L=28[m] L=3.0[m]
W =0.8 [m] Case 1 Case 2 Case 3
W=1.0[m] Case 4 Case 5 Case 6
W=1.2[m] Case 7 Case 8 Case 9
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5.2.3 Soil properties

The typical subsoil layers of the east Port-Said area presented previously by
Hamza et al. (2000) [25] are considered in this analysis, as listed in Table 5.3 and
shown in Figure 5.2. The subsoil consists of eight layers. Each layer has different
unit weight yv, effective-shear strength parameters (c' and ¢"), undrained shear
strength cy, modulus of elasticity Es, Poisson's ratio vs and horizontal modulus of
soil reaction n determined according to ECP 202 [56].

Table 5.3 Subsoil properties, Hamza et al. (2000) [25].

Layer | Soil z Vb c Q' Cu Es Vs n

No. | type [m] | KN/m3 | KN/m2 | [°]| kN/m? | MN/m? | [-] | MN/m?3

1 Soft 5 17 10 24 20 2.4 0.2 0
clay
Medium

2 dense 135| 185 0 35 - 30 0.25] 6.15
sand
Medium

3 stiff 285 155 22 24 46 20.5 0.2 3.7
clay

4 Stiff 38.5 15 31 20 61.5 24.7 0.2 3.7
clay

5 Stiff 48.5 15 37 20 74 28.1 0.2 3.7
clay

6 |50 |ses| 15 | 43 [20] 86 | 314 |02 37
clay
Very

7 Stiff 925 175 75 20 150 60 0.2 3.7
clay

g [P [0 20 [ o [35] - 144 |02 111
sand
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Es=2.4 [MN/m2], vs=0.2, n=0 [MN/m3]

Medium dense sand
Gam=18.5 [kN/m3], ¢'=0 [kN/m2], FHI'=35 [°], Cu=0 [KN/m2]
Es=30 [MN/m2], vs=0.25, n=6.15 [MN/m3]

Medium clay
Gam=15.5 [kN/m3], ¢'=22 [kN/m2], FHI'=24 [°], Cu=46 [kN/m2]
Es=20.5 [MN/m2], vs=0.2, n=3.7 [MN/m3]

Stiff clay
Gam=15 [kN/m3], ¢'=31 [kN/m2], FHI'=20 [°], Cu=64.5 [KN/m2]
Es=24.7 [MN/m2], vs=0.2, n=3.7 [MN/m3]

Stiff clay
Gam=15 [kN/m3], ¢'=37 [kN/m2], FHI'=20 [°], Cu=74.2 [kN/m2]
Es=28.1 [MN/m2], vs=0.2, n=3.7 [MN/m3]

Stiff clay
Gam=15 [kN/m3], ¢'=43 [kN/m2], FHI'=20 [°], Cu=86 [kN/m2]
Es=31.4 [MN/m2], vs=0.2, n=3.7 [MN/m3]

Very Stiff clay
Gam=17.5 [kN/m3], ¢'=75 [kN/m2], FHI'=20 [°], Cu=150 [kN/m2]
Es=60 [MN/m2], vs=0.2, n=3.7 [MN/m3]

Dense sand
Gam=20 [kN/m3], ¢'=0 [kN/m2], FHI'=35 [°], Cu=0 [kN/m2]
Es=144 [MN/m2], vs=0.2, n=11.1 [MN/m3]

Figure 5.2 East Port-Said boring log.

5.2.4 Effective barrette height

According to the ECP 202 [56], there are two methods for determining the
effective-height. These are approximate methods to assess the effective-height of
square or circular piles in homogeneous soil. The first one depends on the
horizontal modulus of soil reaction, while the second depends on the soil modulus
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of elasticity. The barrette is analyzed many times with different barrette heights
ranging from 20 to 60 [m] to investigate the effective-height as follows:

e Method (1): Horizontal modulus of soil reaction.
e Method (2): The soil modulus of elasticity.
e Present analysis.

5.2.4.1 Method (1): Horizontal modulus of soil reaction.

The ECP 202 [56] equations for determining the effective-height using the
horizontal modulus of soil reaction are used in this analysis, equations (37) and
(38). In case the barrette crosses layered soil, these moduli are taken as an
equivalent horizontal modulus of soil reaction n.,, [KN/m®] according to Eq. (39).
This equivalent horizontal modulus is taken as a ratio of the element length that
crosses these layers, as shown in Figure 5.3. The effective-barrette height for each
case listed in Table 5.2 is determined by substituting this equivalent horizontal
modulus into the ECP 202 [56] equations.

L) @37)
n
H,=4xt (38)
2 niH;
Neg = (39)
“ Y H
Where:
Ep Modulus of elasticity of the barrette material, [KN/m?];
Ip Moment of inertia of the barrette, [m*];
t Elastic barrette height, [m];

He Effective barrette height, [m];

Neq Equivalent horizontal modulus of soil reaction, [kN/m?];

ni Horizontal modulus of soil reaction for layer i, [kKN/m®]; and
Hi The barrette height that crosses layer i, [m].
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Figure 5.3 The geometry of the barrette lies between different soil layers.

The effective-height is defined as the height in which the analysis results are not
influenced by increasing this height. Nine cases are considered to determine that
effective-height using the horizontal modulus of soil reaction considering various
barrette heights, H = 20, 30, 40, 50, and 60 [m], as listed in Table 5.2. The
equivalent horizontal modulus of soil reaction is determined according to Eq.
(39), which depends on the barrette height only, as listed in Table 5.4.
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Table 5.4 The equivalent horizontal modulus of soil reaction, neg.

Barrette f Layer depth Horizontal modulus Equivalent
height fom the ground of soil reactionn | norzontal modulus
H [m] surface [KN/m?] of soil react;on Neq

z [m] [kN/m?]
5 0
20 13.5 6150 3816
20 3700
5 0
13.5 6150
30 285 3700 3778
30 3700
5 0
13.5 6150
40 28.5 3700 3758
38.5 3700
40 3700
5 0
13.5 6150
28.5 3700
S0 385 2700 3747
48.5 3700
50 3700
o 0
13.5 6150
28.5 3700
60 38.5 3700 3739
48.5 3700
58.5 3700
60 3700

Substituting the equivalent horizontal modulus of soil reaction neq listed in Table
5.4 into Eq. (37) leads to:

4

~ (40)
The effective-height is determined for the nine cases by substituting the elastic-
height from Eq. (40) into Eq. (38). Then these are listed in Table 5.5 as the first
iteration of determining that effective-height. For case (1) as an example in this
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table, it can be concluded that the effective-height is 23.38 [m] while the barrette
height is 20 [m]. In this condition, the equivalent horizontal modulus of soil
reaction neq doesn’t represent the soil surrounding the barrette, which needs to be
recalculated according to a barrette height equal to this effective-height.
Otherwise, the effective-height seems to be approximately constant when
increasing the barrette height to 30 [m] or more for this case. So, the effective-
height for this case is between 20 and 30 [m]. Accordingly, the next iteration
considered the barrette height to be the effective-height of the first iteration 23.43
[m]. Applying this methodology for determining the effective-height of the nine
cases listed in Table 5.2 leads to Table 5.6.

Table 5.5 Effective barrette height using method (1), first iteration.

Barrette Width | Barrette Height Barrette Length L, [m]
W, [m] H, [m] 2.5 2.8 3.0

20 . . .
30 23.43 25.08 26.14

0.8 40
50
60
20 . . .
30 24.50 26.22 27.33

1.0 40
50
60
20 . . .
30 25.41 27.20 28.34

1.2 40
50
60

Table 5.6 Effective barrette height, Method (1).

Length / Width L=2.5[m] L =2.8[m] L =3.0 [m]
W =0.8[m] 23.40 25.06 26.12
W=1.0[m] 24.48 26.21 27.32
W=1.2[m] 25.39 27.18 28.34
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5.2.4.2 Method (2): The soil modulus of elasticity.

The ECP 202 [56] equation for determining the effective-height using the soil
modulus of elasticity is used in this analysis, Eq. (41). In case the barrette crosses
layered soil, these moduli are taken as an equivalent soil modulus of elasticity
Eseq, [KN/m?] according to Eq. (42). This equivalent modulus is taken as a ratio
of the element length that crosses these layers, as shown in Figure 5.4. The
effective-height for each case listed in Table 5.2 is determined by substituting
this equivalent modulus into the ECP 202 [56] equations.

Where:

seq

He Effective barrette height, [m];

Ep Modulus of elasticity of the barrette material, [KN/m?];
lp Moment of inertia of the barrette, [m“];

4 |E I
H, =444 x |£E
/ Es

_ Y EyH;
2 H;

Es Modulus of elasticity of the soil, [KN/m?];
Eseq  Equivalent soil modulus of elasticity, [KN/m?];

Es  Soil modulus of elasticity for layer i, [kKN/m?]; and

Hi The barrette height that crosses layer i, [m].

|
|
H, Layer (1)
=
|
ol
| Layer (2)
H, | Ee
I
/I
[
H, ___1J ziyer(s)

(41)

(42)

Figure 5.4 The geometry of the barrette lies between different soil layers.
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Nine cases are considered to determine that effective-height using the modulus
of elasticity considering various barrette heights, H = 20, 30, 40, 50, and 60 [m],
as listed in Table 5.2. The equivalent modulus of elasticity is determined
according to Eq. (42), which depends on the barrette height only, as listed in
Table 5.7.

Table 5.7 The equivalent modulus of elasticity, Eseq KN/m?.

Barrette Layer depth Mod'ul'us of Equivalent modulus of
height | from the ground surface | elasticity Es . 2
H [m] 2 [m] [KN/m?] elasticity Eseq [KN/m<]

5 2400
20 13.5 30000 20013
20 20500
5 2400
13.5 30000
30 28.5 20500 20385
30 24700
5 2400
13.5 30000
40 28.5 20500 21591
38.5 24700
40 28100
5 2400
13.5 30000
28.5 20500
>0 38.5 24700 22992
48.5 28100
50 31400
5 2400
13.5 30000
28.5 20500
60 38.5 24700 25108
48.5 28100
58.5 31400
60 60000

Substituting the equivalent modulus of elasticity Eseq listed in Table 5.7 into Eqg.
(41) leads to:
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+|E, L,
H, = 444 x |-ZE (43)
Eseq

The effective-height for the nine cases is determined according to Eq. (43). Then
these are listed in Table 5.5 as the first iteration of determining that effective-
height. For case (9) as an example in this table, it can be concluded that the
effective-height is 33.84 [m] while the barrette height is 20 [m]. In this condition,
the equivalent modulus of elasticity Eseq doesn’t represent the soil surrounding
the barrette, which needs to be recalculated according to a barrette height equal
to this effective-height. Otherwise, the effective-height seems to be
approximately constant when increasing the barrette height to 30 [m] or more for
this case. So, the effective-height for this case is between 30 and 40 [m].
Accordingly, the next iteration considered the barrette height to be the effective-
height of the first iteration 33.68 [m]. Applying this methodology for determining
the effective-height of the nine cases listed in Table 5.2 leads to Table 5.9.

Table 5.8 Effective barrette height using method (2), first iteration.

Barrette Width | Barrette Height Barrette Length L, [m]
W, [m] H, [m] 2.5 2.8m 3m

20 . .
30 26.54 28.90 .

0.8 40 . . 30.00
50
60
20 .
30 28.07 . .

1.0 40 . 30.12 31.72
50
60
20 .
30 29.38 . .

1.2 40 . 31.53 33.20
50
60

Table 5.9 Effective barrette height, Method (2).

Length / Width L=25[m] L=28[m] L=3.0[m]
W =0.8 [m] 26.63 28.96 30.41
W=1.0[m] 28.15 30.55 32.09
W=1.2[m] 29.41 31.90 33.51
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5.2.4.3 Using the present analysis

A comparative test of the numerical model for analyzing laterally loaded single
barrette in east Port-Said is performed to determine the effective-height using the
present analysis. Nine cases are considered in this analysis, as listed in Table 5.2.
Each one is considered and analyzed with various barrette heights H ranging
from 20 to 60 [m] to determine the effective-height. The barrette-soil interface is
divided into elements with a height of h = 1.0 [m]. The barrette length and width
are divided into equal five- and four-elements, respectively, as shown in Figure
5.5. The barrette is considered to be an elastic body in a continuum soil medium.
And the load-displacement relation is determined according to the linear analysis
of single barrettes. The lateral load on the barrette head is taken constant for all
cases and equal to 1000 [kN].
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Figure 5.5 The surface element of the single barrette.

Figure 5.6 to Figure 5.10 shows displacements u, reaction forces Rx, shear forces
Qx, bending moments My and barrette rotations Theta-y with different barrette
heights obtained by the present analysis, for case (1) as an example. From these
figures, it can be concluded that the analysis results are not influenced by
increasing the barrette height to more than 30 [m] for this case. So, the effective-
height for this case is between 20 and 30 [m]. Accordingly, this case is considered
and analyzed with various barrette heights H ranging from 20 to 30 [ml].
Applying this methodology for determining the effective-height of the nine cases
listed in Table 5.2 leads to Table 5.10.
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Table 5.10 Effective barrette height, the present analysis.

Length / Width L=25[m] L=28[m] L=3.0[m]
W =0.8[m] 29 31 33
W=1.0[m] 31 33 34
W=1.2[m] 32 34 36

Other comparisons of displacements u, reaction forces Rx, shear forces QX,
bending moments My and barrette rotations Theta-y for different cases with
different barrette heights are shown in APPENDIX (B).
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Figure 5.6 Displacement u with the barrette height (case 1).
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Reaction forces Rx [KN]

-200 -100 0 100 200 300 400
1 L Il L 0 " L L L ] L L L L Il L L L L Il L L L L ]
T L=25[m] ]
‘o;'. -;//
L I o 1 -120 -70 -20 30 80
+ —t—18 -
/K - -- :
€ : Lo
N i
§ S ‘.‘.‘ 2
3 :.‘ - H=20[m]
.5 —_— H :20 [m] l\ \‘ 24 H =22 [m]
H =30 [m] ,/\ \ H =24 [m]
H =40 [m] Novas | ----H=26[m)
H :50 [m] \‘ H :28 [m]
——H =60[m] 728 1| ----H=20[m]
N H =30 [m]
30-
Figure 5.7 Reaction forces Rx with the barrette height (case 1).
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Figure 5.8 Shear forces Qx with the barrette height (case 1).
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Bending moments My [KN.m]
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Figure 5.9 Bending moments My with the barrette height (case 1).
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Figure 5.10 Barrette rotations Theta-y with the barrette height (case 1).
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5.2.4.4 Results and discussion

Figure 5.11 presents a comparison of effective-height Le using different methods
with that of the present analysis for the nine cases listed in Table 5.2, which
shows that the absolute differences in results between the present hybrid-
technique and both the first and second methods (1) and (2) are 23.70% to 26.63%,
and 5.95% to 10.12%, respectively.

40 = Method (1)
m Method (2)
m Present analysis

w
ol

= = N N w
o [8;] o [8)] o

Effective barrette height L, [m]

(&)

0
Case (1) Case (2) Case (3) Case (4) Case (5) Case (6) Case (7) Case (8) Case (9)

Figure 5.11 Comparison of effective barrettes height Le.

Equations (38) and (43) for determining the effective-height of a square or a
circular pile in a homogeneous soil can be modified to be used for determining
the effective-height in multi-layered soil to be equations (44) and (45) for both
the first and second methods.

H,=5xt (44)

E,l
H,=48x |22 (45)
Eseq

Figure 5.12 presents a comparison of effective barrettes heights L. using different
modified methods with that of the present analysis for the nine cases listed in
Table 5.2, which shows that the absolute difference between the present hybrid-
technique and modified methods (1) and (2) is 0.07% to 1.62% and 0.08% to
1.99%, respectively.
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40 ® Method (1) (modified)
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m Present analysis
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Figure 5.12 Comparison of modified effective barrettes height Le.

From this study, it can be concluded that the behavior of laterally loaded single
barrette with a height less than 20 [m] is relatively rigid. The analysis results are
not influenced by increasing the barrette height to more than 40 [m]. The
maximum bending moment happens at 22% to 26% of the effective barrette
height.

5.2.5 The maximum bending moment and barrette head displacement

The ECP 202 [56] equations for determining the maximum bending moment and
the pile head displacement of the laterally loaded pile with free head support are
used in this analysis, equations (46) and (47).

Pt 1.55M,,t>

U, = 2. EL + L (46)
Mpax = 0.77(Peot + My,) (47)
Where:
Ep Modulus of elasticity of the barrette material, [KN/m?];
Ip Moment of inertia of the barrette, [m*];
t Elastic barrette height, [m];

Pxo  The lateral load at the barrette head, [kN];
Myo  The bending moment at the barrette head, [KN.m];
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Uo The barrette head displacement, [cm]; and
Mmax  The maximum bending moment along the barrette height , [KN.m].

5.2.5.1 Barrette supjected to lateral load only (Myo = Zero).

The maximum bending moment and barrette head displacement for each case
listed in Table 5.2 is determined with My, equal to Zero and then compared with
the present analysis results and shown in Figure 5.13 and Figure 5.14.
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Figure 5.13 Comparison of barrette head displacement uo (Myo =0).
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m Present analysis
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Figure 5.14 Comparison of maximum bending moment of the barrette Mmax
(Myo :0)

Figure 5.13 and Figure 5.14 show that the absolute differences in results between
the present hybrid-technique and the ECP 202 [56] equations for determining the
maximum bending moment and the pile head displacement are 0.20% to 7.48%,
and 18.25% to 30.27%, respectively.

Equations (46) and (47) can be modified to be used for determining the maximum
bending moment and barrette head displacement to be equations (48) and (49)
when My, equal to Zero.

P, t3
u, =3 E,L (48)
Mooz = 0.8 (Pot) (49)

Figure 5.15 and Figure 5.16 presents a comparison of the maximum bending
moment and barrette head displacement using modified equations (48) and (49)
with that of the present analysis, which shows that the absolute difference
between the present hybrid-technique and modified equations is 0.64% to 3.55%
for the maximum bending moment and 0.41% to 3.77% for and the barrette head
displacement.
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Figure 5.15 Comparison of modified barrette head displacement uo (Myo =0).
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Figure 5.16 Comparison of modified maximum bending moment of the barrette
Mmax (Myo :0)
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5.2.5.2 Barrette supjected to bending moment only (Pxo = Zero).

The barrette head displacement for each case listed in Table 5.2 is determined
with Pxo equal to Zero and then compared with the present analysis results and
shown in Figure 5.17. In this case, The maximum bending moment = Myo, Which
is taken to be 2000 [KN.m]. It was found that the absolute difference is ranging
from 18.25% to 30.27%.

0.6

= ECP 202

m Present analysis

Barrette head displacement ¢, [cm]

Case (1) Case (2) Case (3) Case (4) Case (5) Case (6) Case (7) Case (8) Case (9)
Figure 5.17 Comparison of barrette head displacement uo, (Pxo =0).

Eq. (46) for determining the pile head displacement of a square or a circular pile
with free head support can be modified to be used for determining the barrette
head displacement to be eg. (56) when Py, =0.

2M,,,t3

Uy = Yo

EPIP
Figure 5.18 presents a comparison of the barrette head displacement using eq.
(56) with that of the present analysis for the nine cases listed in Table 5.2, which

shows that the absolute difference between the present hybrid-technique and
modified equation is 0.14% to 3.77% for the barrette head displacement.

(50)

92



Chapter 5

06 T

m ECP 202 (modified)
m Present analysis

Barrette head displacement ¢, [cm]

-Case (1) Case (2) Case (3) Case (4) Case (5) Case (6) Case (7) Case (8) Case (9)

Figure 5.18 Comparison of modified barrette head displacement u, (Pxo =0).

5.2.5.3 Barrette supjected to lateral load and bending moment.

The ECP 202 [56] equations for determining the maximum bending moment and
the pile head displacement of the laterally loaded pile with free head support
equations (46) and (47) can be written as equations (51) and (52) to be used for
the laterally loaded single barrette. The results using these equations are
compared with those from the present analysis for the nine cases listed in Table
5.2, as shown in Figure 5.19 and Figure 5.20 where M), = 2000 [kN.m] and P,
= 1000 [kN].

Pt 2My,t3
Uy =
EPIP EPIP

Mpax = (0.8 Pot + M,,,) (52)

(51)
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Figure 5.19 Comparison of barrette head displacement uo.
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Figure 5.20 Comparison of maximum bending moment of the barrette Mmax.

Figure 5.19 and Figure 5.20 show that absolute differences in results between the
present hybrid-technique and the modified equations (51) and (52) for
determining the maximum bending moment and the barrette head displacement
are ranging from 0.4.13% to 7.75%, and 0.06% to 2.51%, respectively.
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Eq. (52) for determining the maximum bending moment can be modified to be
Eq. (53). The results using this equation are compared with those from the present
analysis for the nine cases listed in Table 5.2, as shown in Figure 5.21. The
absolute differences in results are decreased to be 0.06% to 2.51%.

Mpax = 0.8 (oot + My,) (53)

8000 m ECP 202 (modified)

m Present analysis
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Figure 5.21 Comparison of modified maximum bending moment of the barrette
Mmax.

5.2.6 Limit barrette load

A horizontal limit load Him [KN] has been used for the nonlinear load-
displacement curve. It is usually taken as a ratio of the ultimate load as Poulos et
al. (2019) [48], it has been considered to be 0.772 as verified before in Section
4.4,

Broms equations (1964a, 1964b) [10], [11] for determining the ultimate lateral
load of piles in both sand and clay are used by the ECP 202 [56]. These equations
have been checked by many researchers Kulhawy et al. (1995) [31], Zhang et al.
(2005) [62], Fleming et al. (2008) [24], and Russo (2016) [52] by considering
horizontal loading tests on piles, which are well documented to allow a back
analysis of the results. They suggested a slightly different case of the Broms’
method. The improvement consists simply of the adoption of the ultimate lateral
load for sand presented by Barton (1984) [3] Eq. (54). That by

95




Analysis of barrette foundations

replacing Broms equations [10]. Equations (54) and (55) are used to determine
the ultimate lateral load of piles in sand and clay, respectively.

Hye = 05K,°y 22D (54)
H,;=9c,zD (55)

Kp Passive earth pressure coefficient, [-];
v Submarged unit weight of soil, [kN/m?];

D The diameter of the pile with the same moment of inertia, [m];
z Depth from the ground surface, [m];
Cu Undrained cohesion of clay, [kKN/m?]; and

Hut  Ultimate lateral load, [KN].

To use these equations to determine the ultimate lateral load of single
barrettes, D is taken as the diameter of the pile with the same moment of inertia.
The ultimate lateral load of single barrettes Huit and the horizontal limit load of
single barrettes Hiim are calculated and listed in Table 5.11 and Table 5.12.

Table 5.11 The ultimate lateral load of the barrettes Huit, [KN].

Length / Width L=25[m] L=28[m] L=3.0[m]
W =0.8 [m] 67130 75798 82680
W=1.0[m] 73616 83015 88934
W=12[m] 78428 88388 96244

Table 5.12 The horizontal limit load of the barrettes Hiim, [KN].

Length / Width L=25[m] L=28[m] L=3.0[m]
W =0.8[m] 51824 58516 63829
W=1.0[m] 56832 64088 68657
W=12[m] 60546 68235 74300

5.2.7 Guideline for analyzing single barrettes

Guidelines for engineers when analyzing laterally loaded barrettes in east Port-
Said or similar formations are presented. Single barrettes of different lateral loads
and geometries are analyzed linearly and nonlinearly using the hyperbolic
function. The limit lateral displacements for single barrettes in this analysis is
taken as 5% of the barrette width B. This value is considered as an acceptable
practical value for analyzing barrettes. Table 5.13 lists a summary of the analysis
results. In this table, barrette loads for each case study are listed, in addition to
the maximum bending moments when applying these loads. Figure 5.22 shows
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the load-displacement curve according to the hyperbolic function for case 1 as an
example. Other comparisons are shown in APPENDIX (C).

Table 5.13 Summary results of analyzing single barrettes using nonlinear
analysis.

. imi Load | Max. Bending
Cross-section ' Limit
Case [mz] H[erlng]ht disp'acement Px moment Mmax
[cm] [N] | [kNm]
1 25x0.8 29 4 1610 7795
2 2.8x0.8 31 4 1885 9622
3 3.0x0.8 33 4 2078 10934
4 25x1.0 31 5 2228 11131
5 28x1.0 33 5 2627 13880
6 3.0x1.0 34 5 2827 15265
7 25x%x1.2 32 6 2896 14801
8 28x1.2 34 6 3506 18387
9 3.0x1.2 36 6 3665 20292
4 Linear load HI
—e—Nonlinear load Hn
3.5 Barrette load Hall
3
= 25
2,
Q 2
3
S T L=25[m]
) [==
2
6 8 10

Displacement ¢ [cm]
Figure 5.22 The load-displacement curve for Case (1).
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5.3 Parametric Study of Single Barrettes

5.3.1 Introduction

An application of the proposed hybrid technique is used to investigate the effect
of barrette width W, barrette length L, barrette height H, modulus of elasticity of
the barrette material Ep, modulus of elasticity of the soil Es, Poisson s ratio of the
soil vs, and load direction o on the barrette displacement.

The effect of load direction on the displacement of a single barrette is studied.
Displacements with different load directions a are compared to those of the same
single barrette with load direction a = 0°. The change of displacement is
expressed by displacement ratio Rs [-], which is given by Eq. (56):

R ="/, (56)
Where:
Rs Single barrette displacement ratio Rs, [-];
Us Studied single barrette displacement with different load directions a, [m];
and
Uo Single barrette displacement with load direction o = 0°, [m].

5.3.2 Material properties and parameters of interest

Table 5.14 lists groups of dimensionless parameters that are considered. A
barrette width of W = 1 m and lateral load is taken to be that causes a barrette-
head displacement equal to 5% of the barrette width W. This displacement could
be an acceptable value of an allowable lateral displacement of the single barrette.

Table 5.14 Dimensionless groups of parameters used in the analysis.
Dimensionless group Notation | Considered values

Barrette height to width ratio H/W |10, 25,50

Barrette length to width ratio L/W ]1.0,15,2.0,25,3.0
Barrette-soil elasticity ratio Ep/Es | 1000, 2000, 3000, 4000, 5000
Poisson’s ratio of the soil Vs 0.1,0.2,0.3,0.4,05

Load direction a 0°,22.5°,45°,67.5°,90°

5.3.3 Results and discussion

5.3.3.1 Effect of load direction, Barrette length to width ratio, and Barrette -
soil elasticity ratio

Figure 5.23 to Figure 5.27 presents the evolution of the displacement ratio Rs as
a function of the load direction « for various barrette length to width ratios L/W,
load direction «, and barrette-soil elasticity ratios Ep/Es, as listed in Table 5.14.
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The barrette height to width ratio H/W = 25 [-] and Poisson s ratio of the soil vs
= 0.3 [-]. The increasing displacement ratio Rs with increasing load direction «
are shown according to the previously mentioned comments. The displacement
ratio increases as L/W increases, load direction increases, and E,/Es decreases,
where barrettes become stiffer. Except for the square barrette (pile), the
displacement ratio will be constant while increasing the load direction.

1.2 -ttt
L
o = 0°, 22.5° 45°,67.5°, 90° |<'—'>|

116 + | LIW=15]-] 1
x> | H/W =251-] = ]
o v, =0.3 [-] a Load
o 112 + / 4
g i Ep/Es = 1000 _
= ——Ep/Es = 2000
£ 1.08 + Ep/Es = 3000 1
& Ep/Es = 4000
) Ep/Es = 5000
0 1.04 + 1

s S T
0 22.5 45 67.5 90

Loading direction «[°]
Figure 5.23 The displacement ratio Rs for L/W = 1.5 [-].
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14 1
a =0°, 22.5° 45°,67.5° 90° k;q
L/W=2[-]
— 13 T |HW=25[] = +
'D_:u', Vg = 0.3 [-] a Load
o /
£12 ¢ -
[B)
e
§ ——Ep/Es = 1000 |
ERRR! ——Ep/Es =2000 | |
o Ep/Es = 3000
Ep/Es = 4000 | |
Ep/Es = 5000
1 P
0 22.5 45 67.5 90
Loading direction o[°]
Figure 5.24 The displacement ratio Rs for L/W = 2.0 [-].
14 — ¥t
a = 0°, 22.5° 45°,67.5° 90°
L/IW=25][-]
1 | HW=25[]
=1 T [w=03[]
D:U)
-% ——Ep/Es = 1000
= 12 1| —Ep/Es = 2000
% Ep/Es = 3000
& Ep/Es = 4000
211+ Ep/Es = 5000 =
e e e
0 22.5 45 67.5 90

Loading direction «[°]
Figure 5.25 The displacement ratio Rs for L/W = 2.5 [-].
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1.4 —t—— 1
a = 0°, 22.5°, 450,67.5°, 90°
LW =3[]
| | HW=25[] 1
=T Lw=o3y
c;”’ —— Ep/Es = 1000
= —— Ep/Es = 2000
ST Ep/Es = 3000 | L T
= Ep/Es = 4000 | |
8 —— Ep/Es = 5000
o
211 1 = 1
8 W Load
1 : : S—
0 22.5 45 67.5 90

Loading direction a[°]
Figure 5.26 The displacement ratio Rs for L/W = 3.0 [-].

[-]

Displacemet ratio R

T T T T : T T T T : T T IL T : T
135 L | @=0° 225° 45°67.5°, 90° p——— 1
' H/W = 25 [-] 2 /
L | E,/E, = 3000 [-] o Load ]
= 95 v, =0.3[] 7
4 — L/W=10
—L/W=15
L/W = 2.0
LIS T L/W =25 T
——L/W =30
1.05 + 1
095 4——v 0y
0 225 45 67.5 90

Loading direction a[°]
Figure 5.27 The displacement ratio Rs for various barrette L/W.
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5.3.3.2 Effect of Poisson’s ratio of the soil

Figure 5.28 presents the evolution of the displacement ratio Rs as a function of
the load direction a for various Poisson s ratio of the soil and load direction «, as
listed in Table 5.14. The barrette length to width ratios L/W = 2.0 [-], barrette
height to width ratio H/W = 25 [-] and barrette-soil elasticity ratios Ep/Es = 3000
[-]. The increasing displacement ratio Rs with increasing load direction « are
shown according to the previously mentioned comments. The displacement ratio
decreases with increasing Poisson’s ratio of the soil vs.

1.3 T T T T : T T T T : T T T T :
o =0°, 22.5° 45°67.5° 90°
L/W=2.0][-]
H/W = 25 [-]
= E,/E = 3000 [-]
%) 12 T -
Dé ——vs=0.1
b= —vs=0.2
g vs =0.3 L
£ vs = 0.4 = =
8 11 1 vs = 0.5 +
2} =
[a) —V Load
(¢
e
R T

0 225 45 67.5 90
Loading direction a[°]

Figure 5.28 The displacement ratio Rs for the effect of vs.
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5.3.3.3 Effect of barrette height to width ratio

Figure 5.29 presents the evolution of the displacement ratio Rs as a function of
the load direction a for various barrette height to width ratio H/W and load
directions «, as listed in Table 5.14. The barrette length to width ratios L/W = 2.0
[-], barrette-soil elasticity ratios Ex/Es = 3000 [-] and Poisson’s ratio of the soil vs
= 0.3 [-]. The increasing displacement ratio with increasing load direction « is
shown according to the previously mentioned comments. Although the
displacement ratio Rs decreases with decreasing the barrette height to width ratio
H/W, where the barrette becomes more rigid, increasing the barrette height to
width ratio H/W more than 30 has a very small effect, where the barrette height
is reached to the effective-height of the barrette.

3 +——t+t+——

| |
a =00, 22.5° 45°,67.5°, 90° a !

L/W =2.0[-] =
E,/E, = 3000 [-]
12 +|V%=03[]

HW =125 7

—H/W =15
H/W = 20
HIW = 25

—H/W =30
H/W = 50

—a/v Load /

Displacemet ratio R, [-]

1 R e
0 22.5 45 67.5 90
Loading direction a[°]

Figure 5.29 The displacement ratio Rs for the effect of H/W.
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5.4 Parametric Study of Barrette Groups

5.4.1 Introduction

An application of the proposed hybrid technique is used to investigate the effect
of barrette width W, barrette length L, barrette height H, barrette spacing S,
number of barrettes, modulus of elasticity of the barrette material Ep, Modulus of
elasticity of the soil Es, Poisson’s ratio of the soil vs, and load direction « on the
barrette group displacement.

Two barrettes are considered in this study to investigate the lateral load effect on
the barrette group displacement, as shown in Figure 5.30.

—— 5 —

1 [
Ll

Figure 5.30 The geometry of two barrettes as a barrette group.

The group effect is illustrated by studying the ratio between the barrette group
displacements to that of a single barrette. The group effect is expressed by
displacement ratio Rs [-], which is given by Eq. (57):

u

Ry ="y, (57)

Where:
Ry Barrette group displacement ratio Ry, [-];
Ug Studied barrette group displacement, [m]; and
Us Single barrette displacement, [m].

5.4.2 Material properties and parameters of interest

Table 5.15 lists groups of dimensionless parameters that are considered. A
barrette width of W = 1 m and lateral load is taken to be that causes a barrette-
head displacement equal to 5% of the barrette width W. This displacement could
be an acceptable value of an allowable lateral displacement of the single barrette.
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Table 5.15 Dimensionless groups of parameters used in the analysis.

Dimensionless group Notation | Considered values
Barrette spacing ratio S/L |[2,25,3,5,10, 20,50
Barrette breadth ratio L/S 105,04,0.33,0.2,0.1,0.05,0.02

Barrette height to width ratio H/W |10, 25,50
Barrette length to width ratio L/W ]10,15,20,25,30

Barrette-soil elasticity ratio Ep/Es | 1000, 2000, 3000, 4000, 5000
Poisson’s ratio of the soil Vs 0.1,0.2,0.3,0.4,05

Load direction o 0°,22.5°,45°,67.5°,90°
Number of barrettes - 2,3, 4

5.4.3 Results and discussion

5.4.3.1 Effect of Barrette spacing, Barrette length to width ratio, and Barrette
- soil elasticity ratio

Figure 5.31 to Figure 5.36 presents the evolution of the displacement ratio Rq as
a function of the spacing between barrettes for various barrette length to width
ratios L/W and barrette-soil elasticity ratios Ep/Es, as listed in Table 5.15. The
barrette height to width ratio H/W = 25 [-], load direction a = 0°, and Poisson’s
ratio of the soil vs = 0.3 [-]. The displacement ratio Ry decrease with
increasing the normalized center to center distance between barrettes S/L, as
shown according to the previously mentioned comments. The displacement ratio
Ry decreases as L/W increases and Ep/Es decreases, where barrettes become stiffer.

15 —— ——
L/W=1.0[-]
14 + H/W =25]-] 4
- v, =0.3[-]
D:m =Q°
o 137 ¢ T
©
E Ep/Es = 1000
% 12 1 ——Ep/Es = 2000 T
< Ep/Es = 3000
o114 Ep/Es = 4000 1
Ep/Es = 5000
1 —_—— —
1 2 3 4 5 Normalized breadth L/S [-]

Normalized spacing S/L[-] 020 015 010 0.05 0.00
Figure 5.31 The displacement ratio Rq for L/W = 1.0 [-].
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15 —rt t f——t———
L/W =15[-]
141 HW =25[1| T
=, V=03 []
o
o 137 o= 0° T
8
2 12 1 Ep/Es = 1000 1
§ ——Ep/Es = 2000
E— Ep/Es = 3000
olly Ep/Es = 4000 T
Ep/Es = 5000
1 S — : —
1 2 3 4 5 Normalized breadth L/S [-]
Normalized spacing S/L[-] 020 0.15 010 0.05 0.00
Figure 5.32 The displacement ratio Rq for L/W = 1.5 [-].
15 . . : —t
L/W =20][-]
1.4 + H/W =25[]| +
o v, =0.3[-]
S 13t a=0° +
g
% 1.2 + Ep/ES =1000 1
E ——Ep/Es = 2000
& Ep/Es = 3000
o ll+ Ep/Es = 4000 T
Ep/Es = 5000
1 — : : — : —
1 2 3 4 5 Normalized breadth L/S [-]
Normalized spacing S/L[-] 020 015 010 0.05 0.00

Figure 5.33 The displacement ratio Rq for L/W = 2.0 [-].
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Figure 5.34 The displacement ratio Rq for L/W = 2.5 [-].
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Figure 5.35 The displacement ratio Rq for L/W = 3.0 [-].
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Figure 5.36 The displacement ratio Rq with various L/W.
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5.4.3.2 Effect of Poisson’s ratio of the soil

Figure 5.37 presents the evolution of the displacement ratio Rq as a function of
the normalized center to center distance between barrettes S/L for various
Poisson’s ratio of the soil, as listed in Table 5.15. The barrette length to width
ratios L/W = 2.0 [-], barrette height to width ratio H/W = 25 [-], barrette-soil
elasticity ratios Ex/Es = 3000 [-], and load direction o = 0°. The displacement ratio
Ry decrease with increasing the normalized center to center distance between
barrettes S/L, as shown according to the previously mentioned comments. The
displacement ratio Ry decreases as Poisson’s ratio of the soil vs decreases.

15 . : —t . — ——
E,/Es = 3000 [-]
47 L/W =2.0[-] T
= HIW = 25 []
o
S 137 s 1
T
- vs=0.1
(3}
£ 12 1 —vs=0.2 +
= vs=0.3
2 vs=0.4
011+ ' +
vs =0.5
1 —_—r —r
1 2 3 4 5 Normalized breadth L/S [-]

Normalized spacing S/L[-] 0.20 0.15 010 0.05 0.00
Figure 5.37 The displacement ratio Rq for the effect of vs.

5.4.3.3 Effect of barrette height to width ratio

Figure 5.38 presents the evolution of the displacement ratio Rq as a function of
the normalized center to center distance between barrettes S/L for various barrette
height to width ratio H/W, as listed in Table 5.15. The barrette length to width
ratios L/W = 2.0 [-], load direction o = 0°, barrette-soil elasticity ratios Ep/Es =
3000 [-], and Poisson’s ratio of the soil vs = 0.3 [-]. The displacement ratio Ry
decrease with increasing the normalized center to center distance between
barrettes S/L, as shown according to the previously mentioned comments.
Although the displacement ratio Rq decreases with decreasing the barrette height
to width ratio H/W, where the barrettes become more rigid, increasing the barrette
height to width ratio H/W more than 30 has a very small effect, where barrettes
height are reached to the effective-height of the barrette.
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15 — ——
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Figure 5.38 The displacement ratio Rq for the effect of H/W.

5.4.3.4 Effect of numbers of barrettes

The groups of three and four barrettes are considered to study the effect of the
number of barrettes, as shown in Figure 5.39 and Figure 5.40.

B

a

S S

/ \
v [X s
— s
Figure 5.39 The groups of three barrettes.
S

l| I
s

Figure 5.40 The groups of four barrettes.
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Figure 5.41 presents the evolution of the displacement ratio Rq as a function of
the normalized center to center distance between barrettes S/L for a various
number of barrettes, as shown in Figure 5.39 and Figure 5.40, and listed in Table
5.15. The barrette length to width ratios L/W = 2.0 [-], barrette height to width
ratio H/W = 25 [-], load direction a = 0°, barrette-soil elasticity ratios Ep/Es =
3000 [-], and Poisson’s ratio of the soil vs = 0.3 [-]. The displacement ratio Rgq
decrease with increasing the normalized center to center distance between
barrettes S/L, as shown according to the previously mentioned comments. The
displacement ratio Rq decreases with decreasing the number of barrettes in the
barrette group.

2.2 . : . : . : . —t —t —t
i 2 Barrette
2 1 —— 3 Barrette, B1 |
3 Barrette, B2-B3
— 4 Barrette
& 18T Lw=20[1 |7
= L6 H/W =25 [-]
o Ep/ES = 3000 [-]
% Vv,=0.3[-]
& 14 1 o= 0° T
o)
021 1
1 T f T f T } T . } . } . } .
1 2 3 4 5 Normalized breadth L/S [-]

Normalized spacing S/L[-] 0.20 0.15 010 0.05 0.00
Figure 5.41 The displacement ratio Rq for the effect of barrettes number.

5.4.3.5 Effect of load direction

Finally, Figure 5.42 to Figure 5.45 present the evolution of the displacement ratio
Rg as a function of the normalized center to center distance between barrettes S/L
for various load direction a and a various number of barrettes, as listed in Table
5.15. The barrette height to width ratio H/W = 25 [-], the barrette length to width
ratios L/W = 2.0 [-], the barrette - soil elasticity ratios Ep/Es = 3000 [-] and
Poisson’s ratio of the soil vs = 0.3 [-]. The displacement ratio Ry decreases with
increasing center to center of barrettes distance, as shown according to the
previously mentioned comments. The displacement ratio Ry decreases as load
direction increases.
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Figure 5.42 The displacement ratio Rq for the effect of a, Group of 2 barrettes.
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Figure 5.44 The displacement ratio Rq for the effect of a, Group of 3 barrettes,
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Figure 5.45 The displacement ratio Rq for the effect of a, Group of 4 barrettes.
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CHAPTER 6
6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

Most researches on barrettes were performed using three-dimensional finite
element methods. While this technique considered the full interactions between
barrettes and the surrounding soil, it leads to a huge-stiffness matrix. Therefore,
large-systems of equations have to be solved. Consequently, this analysis is time
consuming even for the fast computers of today. Methods for analyzing piles are
used to simplify this problem. In those methods, barrettes are treated as piles with
an equivalent cross-sectional area. The disadvantage of using these methods in
barrettes analyses is that the three-dimensional natural geometry of barrettes and
soil was neglected.

In this thesis, a numerical technique for analyzing vertically loaded barrettes
previously presented by the author (2016) [18] is extended to analyze laterally
loaded single barrettes and barrette groups. The full three-dimensional
interactions between barrettes, surrounding soil, and the group interaction of
every single barrette on the barrette group is considered by generating the full
soil-stiffness matrix. The presented technique is based on the flexibility
coefficients of Mindlin’s solution and one-dimensional finite elements. The CCT
is used to compose the full soil-stiffness matrix. The resulting matrix is added to
the barrette stiffness generating the full stiffness matrix of barrette groups to be
solved. The developed technique considerably reduces the problem size and the
computing time. This hybrid technique is coded in a user-friendly computer
program.

The presented hybrid technique is used for linear and nonlinear analysis of
laterally loaded barrettes/barrette groups embedded in multi-layered soil models.
It has been verified by comparing linear and nonlinear results from analyzing
single barrettes embedded in multi-layered soil with those obtained analytically
in the available literature. Furthermore, a case study is carried out to compare the
present technique results with those from load tests and 3D-FE models. In
addition, two different 3D-FE models are used to compare the results from these
models with those obtained by the hybrid technique.

A comparative study of laterally loaded single barrettes in a real-subsoil is carried
out, in which east Port-Said soil properties are considered. These are similar to
the soil formation of London, Frankfurt, Rome, Hong kong, and Dammam. In
this study, different methods available in the ECP 202 [56] for determining the
effective-height of the barrette are used. Also, the linear and nonlinear soil
models are compared to study soil nonlinearity. Finally, a parametric study is
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carried out to investigate the behavior of laterally loaded single barrettes and
barrette groups with different barrette dimensions, spacing, numbers,
arrangement, material, and soil properties.

6.2 Conclusions

From studies carried out in this thesis, it could be concluded that:

The technique can be effectively used in linear and nonlinear analyses of
laterally loaded single barrettes and barrette groups in layered soil medium.

Due to the lower number of nodes in the converted one-dimensional model
rather than the three-dimensional finite element model, the first model
consumes less computation time in the analysis. That enables analysis of
large barrette foundations such as barrette group and barrette raft.

Verification examination of the present analysis for analyzing laterally loaded
barrettes shows that results are in good agreement with those obtained
numerically by 3D FE.

Good agreement is noticed while comparing the nonlinear analysis of
laterally loaded barrette and measured values obtained from load tests.

Although the barrette head displacements of the present linear analysis of
laterally loaded barrettes are very close comparing to those obtained
numerically by 3D FE, the distribution of barrette lateral displacements along
the barrette length is relatively softer (giving higher displacements) in the
present analysis. The absolute difference in results of the base displacements
is very small. It is less than 0.1 cm comparing to the barrette dimensions. In
which the barrette head displacement is the effective displacement in this case
of analysis.

In general, it can be concluded that the results of the present hybrid technique
are in good agreement with those of 3D-FE models.

The comparative study presents guidelines when analyzing laterally loaded
single barrettes in the east Port-Said area and similar soil formations around
the world, such as London, Frankfurt, Rome, Hong kong, and Dammam.

The ECP 202 [56] equations for determining effective heights of square or
circular piles in homogeneous soil is modified to determine effective barrette
heights in multi-layered soil.

The ECP 202 [56] equations for determining the maximum bending moment
and maximum displacement of square or circular piles with free head support
is modified to determine these of single barrettes.
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Conclusions and recommendations

e The ECP 202 [56] equations for determining the ultimate lateral load of
square or circular piles in sand using Broms (1964a) [10] method need to be
updated with the one suggested by Barton (1984) [3], which is the more
accurate one for piles in sand.

e The maximum bending moment happens at 22% to 26% of the effective
barrette height.

e Determining the ultimate load capacity of laterally loaded single barrette
needs more comparisons with field load tests.

e The behavior of laterally loaded single barrettes analyzed in soil formations
like that existing in east Port-Said is close to being linear when considering
displacement criteria for every single barrette to be is taken as 5% of the
barrette width. This value is considered as an acceptable practical value for
analyzing barrettes.

e The thickness of the topsoil layer is a controlling factor for the barrette-head
displacement.

e The horizontal displacement of the barrette/barrette group is not influenced
by the properties of the underlying layers in the case where the topsoil layer
thickness exceeds approximately 30% of the barrette height.

e The lateral barrette/barrette group load capacity is affected by loading
direction due to the dependence of the flexural stiffness of barrettes on
barrette inertia.

e Increasing the barrette/barrette group height to width ratio H/W more than 30
has a very small effect because the barrette/barrette group height is reached
to the effective-height of the barrette.

e From the parametric study, the normalized spacing S/L is suggested to be
equal or greater than three since the displacement ratio Ry decreases linearly.

6.3 Recommendations for Future Works

The scope for future studies based on the presented hybrid technique may also
include:

e Analyzing of nonrectangular cross-sections barrettes.
¢ Analyzing Mono-piles.

e Analyzing barrettes subjected to torsion load.

e Analyzing barrettes under dynamic loads.

It should be emphasized here that the above mentioned concluding remarks are
specially related to the studied cases. Further future studies are strongly
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recommended, including site measurements and back analysis. That to assess the
validity and accuracy of the barrettes and barrette raft calculations in east Port-
Said.
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8 APPENDIX
8.1 APPENDIX (A)
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Figure A.1 Displacement for case (1) with subsoil (B&D).
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Figure A.2 Bending moment for case (1) with subsoil (B&D).
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Shear Force [KN]
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Figure A.3 Shear force for case (1) with subsoil (B&D).
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Figure A.4 Displacement u for case (2) with subsoil (A&C).
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Bending moment [KN.m]
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Figure A.5 Bending moment for case (2) with subsoil (A&C).
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Figure A.6 Shear force for case (2) with subsoil (A&C).
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Barrette displacement u [cm]
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Figure A.7 Displacement u for case (2) with subsoil (B&D).
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Figure A.8 Bending moment for case (2) with subsoil (B&D).
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Shear Force [KN]
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Figure A.9 Shear force for case (2) with subsoil (B&D).

8.2 APPENDIX (B)
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Figure A.10 Displacement u with the barrette height (case 2).
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Reaction forces Rx [KN]
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Figure A.11 Reaction forces Rx with the barrette height (case 2).
Shear forces Qx [kN]
-600 -400 -200 0 200 400 600 800 1000
[ T R T TR TN TR T T T N SN RO V1 PR N TR TR TN TN TR TR SR NN TN TR TN T NN SN SO TN T M T N T SN |
-100 -50 0
. . 20
E _ K ———
NE N ] T 24 1
Q ® i 1 !
o o i 30\- E Ssoo
A '---4-0- 1 H =26 [m] s, 287
——H=20[m] : - ==~ H=28[m]
H =30 [m] ] H =30 [m]
H=40[m]| 50 Tl - - --H=31[m] n
H =50 [m] ; -
—H=60[m]| go 1

Figure A.12 Shear forces Qx with the barrette height (case 2).
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Bending moments My [KN.m]
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Figure A.13 Bending moments My with the barrette height (case 2).
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Figure A.14 Barrette rotations Theta-y with the barrette height (case 2).
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Barrette displacement v [cm]
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Figure A.15 Displacement u with the barrette height (case 3).
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Figure A.16 Reaction forces Rx with the barrette height (case 3).
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Shear forces Qx[kN]
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Figure A.17 Shear forces Qx with the barrette height (case 3).
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Figure A.18 Bending moments My with the barrette height (case 3).
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Barrette rotations Theta-y [Rad]
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Figure A.19 Barrette rotations Theta-y with the barrette height (case 3).
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Figure A.20 Displacement u with the barrette height (case 4).
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Reaction forces Rx [kN]
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Figure A.21 Reaction forces Rx with the barrette height (case 4).
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Figure A.22 Shear forces Qx with the barrette height (case 4).
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Bending moments My [KN.m]
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Figure A.23 Bending moments My with the barrette height (case 4).
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Figure A.24 Barrette rotations Theta-y with the barrette height (case 4).
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Barrette displacement ¢ [cm]
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Figure A.25 Displacement u with the barrette height (case 5).
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Figure A.26 Reaction forces Rx with the barrette height (case 5).
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Shear forces Qx[kN]
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Figure A.27 Shear forces Qx with the barrette height (case 5).
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Figure A.28 Bending moments My with the barrette height (case 5).
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Barrette rotations Theta-y [Rad]
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Figure A.29 Barrette rotations Theta-y with the barrette height (case 5).
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Figure A.30 Displacement u with the barrette height (case 6).
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Reaction forces Rx [KkN]
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Figure A.31 Reaction forces Rx with the barrette height (case 6).
Shear forces Qx [kN]
-600  -400 -200 0 200 400 600 800 1000
:----:----:---OJ_-W
@T- -200 -150 -100 50
i t t t 20—
=3 ) E 29"‘.""'5\‘\\& 24 1
N . L30[m] U N
§ 'g' -— E 30 :'\i'\» N‘“NNN\\ 28 +
B 71 — | \ | H=30 [m] S
A T H =32 [m] s g ]
—H=20[m] : H =34 [m] Ry
H =30 [m] : SooonTem 3
] - === H=36[m] 367
H=40[m] | 0 ] - -~ - H =38 [m]
H =50 [m] H =40 [m]
—H=60[m] | 60 L 40—

Figure A.32 Shear forces Qx with the barrette height (case 6).
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Bending moments My [KN.m]
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Figure A.33 Bending moments My with the barrette height (case 6).
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Figure A.34 Barrette rotations Theta-y with the barrette height (case 6).
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Barrette displacement v [cm]
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Figure A.35 Displacement u with the barrette height (case 7).
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Figure A.36 Reaction forces Rx with the barrette height (case 7).
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Shear forces Qx [kN]
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Figure A.37 Shear forces Qx with the barrette height (case 7).
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Figure A.38 Bending moments My with the barrette height (case 7).
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Barrette rotations Theta-y [Rad]
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Figure A.39 Barrette rotations Theta-y with the barrette height (case 7).
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Figure A.40 Displacement u with the barrette height (case 8).
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Reaction forces Rx [kN]
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Figure A.41 Reaction forces Rx with the barrette height (case 8).

Shear forces Qx [kN]
-600  -400  -200 0 200 400 600 800 1000

I L } 1 } L -OJ_-W
-50 0
. 20—
E . 24 1
N i
% . i 30\: E 28 +
ks L 1 —> i A H =30 [m] Ny
a) 6 | H =32 [m] NS
——H =20 [m] ] H =34 [m] kS
— i - - - - H=36[m]
H =50 [m] } H=20 [m] ol
—H=60[m]| 60 L )

Figure A.42 Shear forces Qx with the barrette height (case 8).
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Bending moments My [KN.m]
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Figure A.43 Bending moments My with the barrette height (case 8).
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Figure A.44 Barrette rotations Theta-y with the barrette height (case 8).
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Barrette displacement v [cm]
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Figure A.45 Displacement u with the barrette height (case 9).

Reaction forces Rx[kN]
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Figure A.46 Reaction forces Rx with the barrette height (case 9).
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Appendix

Shear forces Qx[kN]
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Figure A.47 Shear forces Qx with the barrette height (case 9).
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Figure A.48 Bending moments My with the barrette height (case 9).
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Barrette rotations Theta-y [Rad]
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Figure A.49 Barrette rotations Theta-y with the barrette height (case 9).
8.3 APPENDIX (C)
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Figure A.50 The load-displacement curve for Case (2).
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Figure A.51 The load-displacement curve for Case (3).
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Figure A.52 The load-displacement curve for Case (4).
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Load @, [MN]
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Figure A.53 The load-displacement curve for Case (5).
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Figure A.54 The load-displacement curve for Case (6).
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Figure A.55 The load-displacement curve for Case (7).
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Figure A.56 The load-displacement curve for Case (8).
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Load P, [MN]
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Figure A.57 The load-displacement curve for Case (9).
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